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The role of oncogenic kinases in human cancer (Review)
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Abstract. Tumorigenesis in humans is a multistep process,
which reflects genetic alterations that lead to cell transformation
and malignancy. Cellular genes that are altered are normally
involved in maintaining cell homeostasis by participating in
signaling pathways tightly regulated to maintain the functional
integrity of the cell. When these genes are altered they escape
from the regulatory control and transmit signals that lead to
the progressive conversion of normal cells into cancer cells.
Oncogenic signals involve activation of kinases, which can
be either a primary event when they are directly mutated in a
tumor cell or a secondary event as recipients and mediators of
oncogenic signals. Transmembrane (e.g. EGFR, PDGFR) or
cytoplasmic (Src, Abl) tyrosine kinases are found mutated in
a variety of human tumors. Cytoplasmic serine threonine
kinases (Raf, Akt, Tpl-2) are also mutated or activated in
several types of human malignancies. Kinases transduce signals
that lead to cell proliferation or inhibition of programmed cell
death by activating transcription factors (e.g. AP1, NF«B,
Myc), inhibiting pro-apoptotic molecules (e.g. Bad, Bax), or
they participate in deregulating the cell cycle control. Thus,
kinases play a central role in oncogenesis rendering them
putative targets for anti-cancer drug design.
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1. Introduction

Cancer arises when one or more cells lose their ability to
control cell division and they begin to proliferate in an
uncontrolled fashion. The origin of cancer lies in the genetic
material of the cell and is a result of an accumulation of
mutations that promote clonal selection of cells with an
aggressive phenotype. This phenotype is underlined by the
faster proliferation rate and alterations in the cell morphology.
To find effective therapeutic interventions for cancer we need
to understand the events that take place during cell trans-
formation. Since cancer originates in the genetic material of
the affected cell, the primary step is the identification of the
genes that are altered in the tumor cell. These genes are defined
as oncogenes, genes that are usually either overexpressed or
mutated so that they cannot be regulated as they used to, and
oncosuppressor genes, genes that normally function as brakes
in the cell cycle or repair damaged DNA and when their
function is lost the cell loses control of its division rate or
acquires mutations that lead to faster proliferation (1,2). The
second step is the understanding of the role of the proteins
encoded by these genes in the cellular environment. In other
words, we need to understand the function of these proteins
in the normal cell and in the tumor cell. By elucidating the
mechanism through which these proteins induce the tumor we
can interfere with therapeutic agents that will be able either to
specifically inhibit the function of the genes involved
eliminating the cells, or perturb their proliferation and lead
them to extinction (3).

All oncogenic proteins participate in cellular functions
that involve transduction of signals from the extracellular
environment, through the membrane, into the cytoplasm
towards the nucleus, where transcription is initiated to generate
proteins that will eventually contribute to the oncogenic
phenotype. Study of the signal transduction in cancer can be
therefore divided into the following areas: a) signaling from
growth factors and cytokines via transmembrane receptors,
b) role of the cytoplasmic signaling molecules in cancer c)
regulation of transcription factors in cancer. These signaling
events have effects a) on the regulation of the cell cycle and
b) the regulation of apoptosis.

Cellular signaling involves phosphorylation events that
occur through interactions of kinases that are localized on the
cell membrane, in the cytosol or in the nucleus. Kinases that
are often deregulated in human cancers are able to initiate or
alter signals that eventually lead to cell proliferation and
transformation. Such kinases transfer phosphates in tyrosine
residues or serine and threonine residues of other kinases or
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Figure 1. Signaling via transmembrane receptors. Receptor tyrosine kinases are bound to their ligands, dimerize and transmit signals that lead to proliferation and

differentiation.

other proteins that participate in various signaling pathways
in the cell.

2. Signaling via transmembrane receptors

Transmembrane receptors often contain domains that exhibit
catalytic properties. The tyrosine kinase receptors are a major
family of transmembrane receptors. Tyrosine kinases act to
transfer phosphate from ATP to tyrosine residues on specific
cellular proteins. Phosphorylation of these proteins alters their
catalytic properties or their association with other molecules
and therefore initiates biochemical signals that lead to gene
transcription or morphological changes. Tyrosine kinases can
be either transmembrane or cytoplasmic. The first oncogene
identified was the tyrosine kinase v-sr¢ which was encoded
by the Rous sarcoma virus in chicken. The cellular homologue
c-src is a non-receptor kinase tightly regulated in contrast
with its oncogenic viral counterpart (4,5).

Tyrosine kinase receptors can contribute to the oncogenic
phenotype by different mechanisms:

a) Secretion of particular growth factors may be
deregulated and as a result the receptor will be triggered at a
higher than the normal level. Often tumors are found to
secrete growth factors such as epidermal growth factor
(EGF), colony stimulating growth factor 1 (CSF1), insulin
growth factor I (IGF-1) and platelet-derived growth factor
(PDGF) (6). These factors bind to their receptors and initiate
growth and proliferative signals. This mechanism establishes
an autocrine loop that leads to tumor growth (Fig. 1).

b) Tyrosine kinase receptors often dimerize or oligomerize
following ligand binding. The dimerization and the
conformational changes that are induced by ligand binding
bring the cytoplasmic tails in such proximity as to trigger
autophosphorylation. Autophosphorylation in most cases
activates a cascade of phosphorylation events that include

phosphorylation of intracellular signaling molecules and
recruitment of SH2 (sre homology 2) domain-containing
proteins that bind to specific tyrosine phosphorylated residues
(7,8). In various tumors tyrosine kinase receptors can be
constitutively activated by mutations that render them active
independent of ligand binding. Such mutations were found on
NEU/c-erbB-2 (9,10). Mutation of the transmembrane domain
was also found in other viral oncogenes such as v-ROS, which
obtains a very broad substrate specificity (11).

¢) Alternatively, tyrosine kinases can become oncogenic by
mutations that make them active independent of ligand binding
or dimerization. Non-receptor tyrosine kinases are also
activated by mutations that affect their negative regulation such
as the mutation on tyrosine 527 of Src that leads to deregulation
of its activation (12).

d) Several tyrosine kinases are activated in tumors via
mutations. A major example is the BCR-ABL that is a mutant
protein caused by the reciprocal translocation between
chromosomes 9 and 22, the Philadelphia chromosome, that
juxtaposes sequences of the breakpoint cluster region BCR
on chromosome 22 with the c-ABL kinase on chromosome 9
(13,14). This translocation is present on 95% of chronic
myelogenous leukemias, which account for 20% of the adult
leukemias. The BCR-ABL fusion gene in CMLs produces a
protein in which the first exon of c-ABL has been replaced by
BCR sequences encoding 927 or 902 amino acids (15,16). In
other cases 185 kDa BCR portion is fused with exons 2-11 of
the c-ABL protein (17). The BCR-ABL chimeric protein
exhibits tyrosine kinase activity several fold higher than that
of the c-ABL. This kinase can transform fibroblasts and is
considered highly oncogenic (18,19). The pathways through
which this protein causes transformation are not clearly
defined. It is known that it binds and activates GRB-2 (20)
which in turn activates the Ras pathway, a key pathway for
triggering MAPK activation and cell proliferation. Other
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Figure 2. Signaling via cytoplasmic proteins. Activation of transcription factors. Oncogenic serine threonine kinases transduce signals to activate the MAPK,

JNK and NFxB pathways which in turn promolte gene expression.

known fusion proteins are TEL-ABL, present in acute
lymphoblastic leukemia (ALL), in acute myeloid leukemia
(AML) and in chronic myeloblastic leukemia (CML) with a
reciprocal 1(9;12) translocation which links the Ets-like trans-
cription factor TEL with the ABL tyrosine kinase (21-23).
TEL has also been found fused to the PDGF receptor (TEL-
PDGFR) in chronic myelomonocytic leukemias (CMML)
through an acquired translocation in hematopoietic cells,
t(5;12)(q33;p13) (24-206).

Other receptors involved in the signaling in tumor cells are
the cytokine and growth factor receptors that transduce
signals from cytokines and growth factors often expressed by
tumor cells, such as the TGFB in breast tumors (27). Antigen
receptors also play a significant role in tumor formation either
by giving the tumor cell the ability to escape the immune
system surveillance or by rendering hematopoietic cells
sensitive to proliferation signals.

3. Signaling via cytoplasmic proteins

The signal that is initiated at the transmembrane receptors is
being transduced through cytoplasmic proteins via the cyto-
plasm into the nucleus. The cytoplasmic signaling molecules
can be protein kinases, phosphatases or other proteins such as
adaptor molecules. Most transmembrane proteins are associated
with intracellular tyrosine or serine threonine kinases, which,
in turn activate signaling cascades towards the nucleus.

Activation of the MAPKinase and the PI3Kinase cascades
are critical events during cell activation and proliferation.
Several oncogenes are known o act on these pathways and
several molecules that participate on these cascades when
deregulated become oncogenic. Ras, a well-studied family of
oncogenes, structurally altered in about 25% of all human
tumors, functions on activating the MAPK cascade (28-30).
Rafl, a serine threonine kinase that is activated by Ras, is also
found to be activated in myeloid leukemias (31,32).

Cytoplasmic oncogenes can be serine threonine kinases.
In this family of oncogenes the most important ones are the
Akt family (Aktl, Akt2, Akt3). Akt2 was found to be activated
in pancreatic adenocarcinomas, small cell lung cancer, and
ovarian cancers (33-35). Akt3 was also found activated in
estrogen receptor deficient breast cancers and androgen
independent prostate cancers (36). The Tpl-2/Cot oncogene
is activated in breast (37), thyroid and colon tumors (38).

The Tpl-2 oncogene activates the MAPKinase (mitogen
activated protein kinase) and the SAPKinase (stress activated
protein kinase) pathways (39,40). Activation of these two
pathways leads to the activation of transcription factors
such as APl and NFAT (41,42). Tpl-2 also activates the
transcription factor NFxB, by activating the kinase that
phosphorylates and induces degradation of the NFxB
inhibitor IkBa (43-45). Activation of these factors induces
transcription of several genes that contribute to the tumor
phenotype (Fig. 2).

The Akt proto-oncogene (40) is activated by PDGF receptor
via activation of the PI3Kinase, a kinase that phosphorylates
lipids (47,48). The lipids bind to the PH domain of Akt and
induce its serine threonine kinase activity (49). Activation of
Akt inhibits apoptosis by inhibiting BAD, a pro-apoptotic,
Bcl-2-binding protein (50-52). Akt is also involved in inducing
cell eycle progression possibly by activating transcription
factors such as NFxkB (53,54). Akt kinase is known to induce
phosphorylation of IkBa via NIKinase and IKKa (53). It is also
a transducer of growth factor signals such as PDGF, G-CSF,
IL-2, hepatocyte growth factor, IGF and other mitogenic
signals. Most of these signals lead to phosphorylation of Akt
which results in signals that lead to inhibition of apoptosis
(48,55,56). The pleiotropic effect of Akt and other oncogenic
molecules is often regulated by other oncogenic molecules.
Thus, when a combination of such oncogenes is activated a
particular phenotype is favored. For example, in breast tumor
cells Akt phosphorylates Raf at a highly conserved serine
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Figure 3. Cell cycle control. Progression through the cell cycle involves different regulatory mechanisms that require phosphorylation of cyclins by the CDKs

and subsequent change in the phosphorylation status of the Rb protein.

residue in its regulatory domain in vive. This phosphorylation
of Raf by Akt inhibited activation of the Raf-MEK-ERK
signaling pathway and shifted the cellular response from cell
cycle arrest to proliferation (57). Such interactions can occur
and determine the levels of crosstalk and fine regulation of
different signaling pathways, the MAPK and the PI-3Kinase.

The examples of Raf, Akt and Tpl-2 indicate that an
oncogenic serine threonine kinase can contribute to tumor
formation through pleiotropic effects. On the one hand they can
induce transcription of genes that are normally not expressed
in these cells and on the other hand they can directly interfere
with cell cycle machinery and promote progression through the
cell cycle. Alternatively, they can inhibit programmed cell
death and, therefore, allow the survival of a cell that carries
other defects and would otherwise enter apoptosis.

4. Signaling to the nucleus

Cytoplasmic oncogenes often lead to the activation of trans-
cription factors. The transcription factors themselves, though,
can be activated by several mechanisms during tumorigenesis
and contribute to tumor formation. Such signals are often
regulated via phosphorylation of transcription factors either
in the cytoplasm or in the nucleus. In the case of NFxB a
sequence of phosphorylation events leads to degradation of
its inhibitory molecule, IkBa and its subsequent translocation
into the nucleus. In other cases, such as NFAT, dephos-
phorylation by calcineurin leads to its nuclear translocation
and a nuclear kinase, GSK3 phosphorylates NFAT which
translocates into the cytoplasm (58).

In some cases a transcription factor is mutated and activated
independent of extracellular or cytoplasmic signals. Expression
of the transcription factors Ets-1 and Ets-2 is induced during
cell proliferation but it has also been directly linked to a
complex chromosomal translocation, t(6;18;21), in acute non

lymphoblastic leukemias. Ets-2 is overexpressed during hepatic
regeneration and in hepatocellular carcinomas (59). In other
cases activation of the signaling pathways previously
mentioned lead to cell differentiation and proliferation. These
events require different genes to be expressed. NFxB is a
major transcription factor found to be activated in breast
tumors, pancreatic adenocarcinomas, lung cancers and acute
T cell leukemias (60-62). Another transcription factor
involved in various human tumors is c-myc. When over-
expressed in human tumors it dimerizes with Max, a complex
that elicits growth signals, while the Mad-Max complex
promotes differentiation signals (63-65). Overexpression of
c-myc has been shown to be involved in human tumors
including colon, stomach, cervix, breast and haematological
neoplasms (66-69).

5. Cell cycle progression

A tumor cell is characterized by short and uncontrolled
proliferation. All oncogenic events lead to deregulation of the
cell machinery that controls the cell cycle. In other cases the
cell cycle components have been affected and the cell loses
the ability to control its proliferation. Whether the effect is
direct, involving mutation of genes that regulate the cell
cycle, or indirect, the result is a shorter proliferation time.

The life cycle of a cell is divided in the following stages: GO
where the cell has just emerged from mitosis and is growing
to reach its mature stage; G1l, the most prolonged stage where
the cell does not divide and functions as part of the tissue where
it belongs; S stage where the cell enters the mitotic stage and
duplicates its DNA and finally the M stage where the cell enters
mitosis.

Most oncogenic processes exert their greatest effect by
targeting particular regulators of the G1 to S phase progression.
When a cell exits from the G1 phase to enter the S phase it is
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Figure 4. Regulation of apoptosis. Apoptosis can be triggered either by sensors of cellular stress or through ligation of the death receptors with their ligands.
Activation of the apoptotic mechanism involves proteolytic cleavage and activation of the caspase family of proteases.

bound to divide. Control of the Gl to S progression is,
therefore, a crucial checkpoint for the cell fate. Deregulation
of the checkpoint proteins can contribute to uncontrolled
proliferation (70). Progression from the Gl to S phase occurs
when cyclins respond to growth factor signals. Thus, such
signals can be initiated by different growth stimuli that transmit
the signal to the cytoplasm where cyclins are bound to cyclin
dependent kinases and control the restriction point. Release
of the cyclin dependent kinases from the complex pinpoints
the passage from G to S phase. Cyclins D1, D2 and D3 are
known to be involved in controlling this stage. They are bound
to the cyclin dependent kinases CDK4 and CDKG6 which, when
released, phosphorylate the retinoblastoma protein Rb (71).
Phosphorylation of Rb seems to be a critical point in the cell
cycle progression since it appears to be necessary for the trans-
criptional initiation of several genes. Hyper-phosphorylated
form of Rb is present past the G1 to S restriction point and all
through the cell cycle until cell division (72). The cyclin/CDK
complex is inhibited by a family of proteins that include p15,
pl6, p18 and pl9, frequently mutated in human melanomas,
gliomas and leukemias, that specifically interact with CDK4
and CDKG6 and therefore block the function of D type cyclins

(73.74). On the other hand the p21, p27, and p57 family of

cyclin inhibitors are capable of interacting with cyclins type D,
E and A exhibiling a broader spectrum of inhibition (75-77)
(Fig. 3).

Mutations in genes that regulate the cell cycle have been
detected in several types of tumors. Inactivation of the Rb gene
is a primary event in retinoblastomas (78), but overall the gene
is targeted more often in adult cancers, particularly small-cell
carcinomas of the lung (79). Similarly, inherited loss of INK4a
gene that encodes p16 confers susceptibility to melanoma (80).
Cyclin D1 is also overexpressed in many human cancers as a
result of gene amplification or translocations targeting the D1

locus on human chromosome 11q13 (81). The gene encoding
its catalytic partner CDK4, located on chromosome 12q13 is
also amplified in sarcomas and gliomas (73) although several
other potential oncogenes including MDM2, the p53 antagonist,
map on the same region (82).

Although cell cycle transition depends on the underlying
CDK cycle, superimposed checkpoint controls help ensure
that certain processes are completed before others begin. The
role of such mechanisms is to brake the cell cycle in the face
of stress and damage and allowing repair to take place. The
best-studied checkpoint regulator is the p53 gene and is most
frequently mutated in human cancer (83,84). Even though p53
is a short-lived protein, it stabilizes and accumulates when the
cell undergoes damage (85). The precise signal transduction
pathway that activates p53 has not been elucidated but is
likely to include genes such as ATM (mutated in ataxia
telangiectasia) (86). The p53 protein acts as a transcription
factor and cancer-related mutations cluster in its binding
domain (85).

6. Regulation of apoptosis

Cytoplasmic or nuclear kinases transduce mitogenic signals
that lead to cell proliferation and transformation. Activation
of such molecules may also inhibit cells to undergo
programmed cell death. Cells that suffer from DNA damage,
environmental stress, or lose their ability to maintain
homeostasis due to mutations, are destined to die. Apoptosis
is regulated by a mechanism that involves cytochrome c release
from the mitochondria and subsequent activation of several
proteolytic molecules termed caspases that lead to degradation
of cellular components, DNA cleavage (‘laddering’) and death
(87). Ligation of the Fas or the TNF-a receptors with their
ligands initiate signals that lead to caspase 8 activation, cyto-



588

chrome c release from the cytoplasm, activation of caspase 9
and the APAF complex and subsequent cleavage and activation
of caspase 3, caspase 6 or caspase 7 (88,89) (Fig. 4). Caspases
also translocate into the nucleus triggering their pro-apoptotic
effects (89).

In cancer cells an anti-apoptotic mechanism is often
activated to rescue the transformed cell from programmed
cell death. The most common mechanism is activation of the
bel-2 family of proteins (Bcl-2, Bel-xL, Bel-W) that are able
to inhibit cytochrome c release from the mitochondria and
rescue the cell from apoptosis. Inactivation of the pro-apoptotic
molecules Bax, Bak, Bid or Bim also contributes to rescuing
the cell from apoptosis. Activation of oncogenic kinases such
as Akt-1 protects cells from apoptosis by inhibiting the pro-
apoptotic molecule Bad (50). Several anti-apoptotic signals
such as growth factors (PDGF, EGF etc.) lead to the activation
of signaling pathways including the PI3Kinase or MAPK
pathways that can also be activated by oncogenic kinases
such as Akt and Tpl-2. Thus, activation of these oncogenic
kinases rescues the cell from the apoptotic signals and
promotes survival.

7. Concluding remarks

The paths that a cell can take to become malignant are variable.
Each different cancer type and tissue requires activation of a
different set of oncogenes in order to promote transformation.
These oncogenes initiate or transduce signals that lead to
deregulation of gene expression and uncontrolled proliferation.
Kinases are key molecules in all signaling cascades since
they deliver phosphates, the ‘currency’ of most signaling
pathways. Different kinases are being activated in different
human tumors, either by being directly mutated or due to other
events that induce signals of the pathway(s) they participate
in. Involvement of kinases in vital signaling events renders
them valuable targets for therapeutic intervention in human
cancers.
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