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Aberrant Methylation and Deacetylation of Deleted in Liver Cancer-1

Gene in Prostate Cancer: Potential Clinical Applications
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Abstract

Purpose: The deleted in liver cancer-1 (DLC-1) gene that encodés a Rho GTPase-activating
protein with tumor suppressor function is located on chromosome 8p21-22, a region frequently
deleted in prostate carcinomas. This study was designed to determine whether DLC-7 is deregu-
lated in prostate carcinomas and to assess the contribution of DLC-7 alterations to prostate carci-
nogenesis.

Experimental Design: Primary prostate carcinomas, prostate carcinoma cell lines, benign pros-
tatic hyperplasias, and normal prostatic tissues were examined for detection of functional and
structural alterations of the DLC-7 gene by real-time PCR, methylation-specific PCR, and Southern
and Western blots.

Results: Down-regulation or loss of DCL-7 mRNA expression was detected in 10 of 27 (37%)
prostate carcinomas, 3 of 5 (60%) prostate carcinoma cell fines, and 5 of 21 (24%) benign pros-
tatic hyperplasias. DLC-7 promoter methylation was identified in 13 of 27 (48%) prostate carcino-
mas and 2 matching normat tissues and in 15 of 21 (71%) benign prostatic hyperplasias but was
absent in 10 normal prostatic tissues from noncancerous individuals. Genomic deletions were
found in only 3 prostate carcinomas and 1 benign prostatic hyperplasia. DLC-1 protein was not
detected in 8 of 27 (30%) prostate carcinomas and 11 of 21 (52%}) benign prostatic hyperplasias.
Methylation of DLC-7 correlated.with age in prostate carcinoma patients (P = 0.006) and with
prostate-specific antigen blood levels in benign prostatic hyperplasia patients (P = 0.029). Treat-
ment of the three prostate carcinoma cell lines (PC-3, LNCaP, and 22Rv1) expressing a low level
of DLC-1 transcripts with inhibitors of DNA methyltransferase or histone deacetylase increased
DLC-1 expression.

Conclusions: These results show that the transcriptional silencing of DLC-1 by two epigenetic
mechanisms is common and may be involved in the pathogenesis of prostate carcinomas and
benign prostatic hyperplasias and could have potential clinical application in the early detection

and gene therapy of prostate cancer.

Prostate cancer remains a major cause of cancer-related deaths
worldwide, with an estimated 232,000 new cases in United
States and 30,000 deaths in 2005 (1). Molecular and genetic
mechanisms implicated in the development of this disease have
only recently been characterized (2). Prostate carcinomas, like
several other types of solid tumors and hematologic malignan-
cles, exhibit recurrent loss of DNA copy number and loss of
heterozygosity on the short arm of chromosome 8, particularly
at region 8p21-22 (2-7).
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Region 8p21-22 contains the gene deleted in liver cancer-1
(DLC-1), a regulator of the Rho family of small GTPases that is
highly homologous to the rat p122RhoGAP (8, 9). The
regulation of Rho GTPase proteins may be critical to the
neoplastic process (10-13). An altered balance between active
GTP-bound and inactive GDP-bound forms determines the
activity of Rho proteins. DLC-1-mediated negative regulatory
effect on cell growth and tumorigenicity could be due to the
ability of RhoGAP to inactivate Rho proteins. DLC-1 RhoGAP
has been found to enhance the in vitro GTPase activity of RhoA
and Cdc42, which are overexpressed in cancer cells (13-15).

DLC-1 has been considered a candidate tumor suppressor
gene, because it was initially cloned as a genomic DNA segment
underrepresented in a primary human hepatocellular carcino-
ma and was found to be frequently deleted, down-regulated, or
inactivated in several forms of cancer (8). Tumor suppressor
genes that are deregulated or silenced by promoter hyper-
methylation are often located in genomic regions that are
frequently deleted in neoplasias (16). This explains why down-
regulation or inactivation of the DLC-1 gene is commonly
mediated at the genomic level by heterozygous or homozygous
deletion and at the transcriptional level by aberrant promoter
methylation in breast, liver, colon, lung, stomach, and brain
tumors (8, 15, 17-22). Remarkably, promoter methylation of
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DLC-1 is also common in hematologic malignancies, as methy-
lation of DLC-1 has been found in >70% of various types of
childhood and adult leukemias (23, 24). It has been proposed
that DLC-1 methylation status in non-Hodgkin’s lymphomas
could be used as a diagnostic marker (23).

Evidence that DLC-1 can function as a tumor suppressor has
come from experiments in which DLC-1 ¢cDNA was transfected
into human tumor cells that do not express the endogenous
gene. Overexpression of DLC-1 induced apoptosis and inhi-
bited cell proliferation, colony formation, and cell migration
in vitro. It also reduced or prevented the development of tumors
after inoculation of breast, liver, lung, and ovarian carcinoma
cells in athymic nude mice (17, 25-29). Recently, DLC-1 was
identified as a potential breast cancer susceptibility gene using
high-throughput single nucleotide polymorphism genotyping
and as a breast metastasis suppressor gene (30-32). In addi-
tion, DLC-1 is essential for embryonic development, as mice
homozygous mutant embryos do not survive beyond midterm
gestation (33).

Given the high frequency of loss of heterozygosity and loss of
DNA copy number on 8p21-22 in human prostate carcinomas,
we sought to find out whether alterations of the DLC-1 gene are
recurrent and to determine their nature and relevance to this
neoplasia. In this study, we identified recurrent functional
alterations, implicating DLC-1 gene in prostate carcinogenesis.

Materials and Methods

Patients. Tissue specimens from 27 patients with prostate carcino-
ma that underwent radical prostatectomy and from 21 patients with

benign prostatic hyperplasia that underwent suprapubic or transure-
thral resection were collected within a 3-year period (from October
2000 to September 2003) at the Department of Urology, University
Hospital of Heraklion (Crete, Greece). In 3 prostate carcinoma cases,
normal adjacent prostatic tissue was also available. Median age at
diagnosis was 70.5 years (range, 54-75) for prostate carcinoma subjects
and 73 years (range, 61-89) for benign prostatic hyperplasia patients.
Prostate carcinoma stage (tumor-node-metastasis) and grade (Gleason
score) were determined by histologic examination using H&E-stained
slides. Because the prostate gland is not normal in old individuals, we
used specimens from 10 young subjects (age 20-28 years) as a source of
normal prostatic tissue. Specimens were collected postmortem, within
8 hours of the time of death, at the same hospital. All normal, benign,
and malignant samples were immediately frozen and stored at —80°C
until used. The clinical and histopathologic characteristics of all
samples are listed in Fig. 1A. The ethics committees of the University
of Crete and the University Hospital of Heraklion approved this study,
and written informed consent was obtained from all patients or their
relatives.

Cell culture. The human prostate carcinoma cell lines PC-3, LNCaP,
D145, and 22Rv1 (American Type Culture Collection, Manassas, VA)
and SP3031 (kindly provided by Dr. Sen Pathak, M. D. Anderson
Cancer Center) were maintained in RPMI 1640 (BioSource, Camarillo,
CA) supplemented with 10% fetal bovine serum. The immonalized
normal prostate epithelial cell lines RWPE-1 and PWR-1E (American
Type Culture Collection) were cultured in keratinocyte serum-free
medium supplemented with 5 ng/mL human recombinant epidermal
growth factor and 0.05 mg/mL bovine pituitary extract (Invitrogen,
Carlsbad, CA).

Quantitative and semiquantitative reverse transcription-PCR. DLC-1
mRNA expression was evaluated by quantitative real-time reverse
transcription-PCR. Total RNA was extracted using RNeasy Mini kit
(Qiagen, Valencia, CA) according to the manufacturer’s instructions.

A Prostate Cancer Benign Prostatic Hyperplasia Normal Prostate

1D Age |TNM |Gl ([PSA|M|R|P ID

PCA1 70 | T2b | 8 | 12.7 BPH1

PCA2 73 | T3a | 7 | 30.0 BPH2

PCA3 68 | T3b | 9 | 10.0 BPH3
Fig. 1. Methylation and expression analysis PCA4 62 |T2b | 5 | 5.8 BPH4
of DLC-7 gene in prostate cancer. PCAS 72 | T3a | 6 | 6.5 BPHS
A, summary of clinical and pathologic PCA6 65 | T2b | B | 7.9 BPH6
charactenstics and molecular analysis of PCA7 72 | T3b | 6 | 221 BPH7
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PCA24; N-13, adjacent normal tissue of PCA14 | 55 | T3b | 7 | 9.0 BPH14
PCA27; N, normal prostate; PCA, prostate PCA15 | 54 | T2b | 6 | 9.0 BPH15
cancer; BPH, benign prostatic hyperplasia. PCA16 | 75 | Tia | 2 | 4.7 BPH16
Red. methylation in celumn M and reduced PCA17| 72 | T2b | 5 |14.2 BPH17
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expression after Western blot ana{ysrs in PCA23 | 68 | T3a | 6 | 8.0
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(V). GAPDH was used as an internal PCA26 | 62 | 73a | 5 | 7.0
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Table 1. Primer sequences used for reverse transcription-PCR, MSP, bisulfite DNA sequencing, and chromatin
immunoprecipitation

Primers Sequence (5-3) PCR product size (bp)
DLC-1F CACAGGACAACCGTTGCCTCAG 465
DLC-1R CTCTTCAGGGTGTTGAGATGGA

GAPDH-F GAAGGTGAAGGTCGGAGTCA 226
GAPDH-R GAAGATGGTGATGGGATTTC

MSP-F TTTAAAGATCGAAACGAGGGAGCG 172
MSP-R CCCAACGAAAAAACCCGACTAACG

USP-F TTTTTTAAAGATTGAAATGAGGGAGTG 178
USP-R AAACCCAACAAAAAAACCCAACTAACA

Bis-DLC-F GTTTTTAGTTAGGATATGGT 292
Bis-DLC-R ACTTCTTTCTACACATCAAACAC

ChIP-F AGAGGAGAGGCGGGGCCT 124
ChIP-R CTTAGCGACGGGCTGTTCTCC

Reverse transcription reactions were carried out on 1 pg total RNA with
the SuperScript 11 First-Strand Synthesis System using the oligo(dT)
primer (Invitrogen). For real-time PCR, sequence-specific PCR primers
and TagMan probes for DLC-1 (Assay ID: Hs00183436) and glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH; Applied Biosystemns, Foster
City, CA) were used. DLC-1 was amplified on the same plate with the
reference, GAPDH, using the TagMan Universal PCR Master Mix. All
reactions were carried out in the ABI PRISM 7900 Sequence Detection
System (Applied Biosystems). The 2~%4%" method was used to calculate
the relative fold difference of DLC-1 mRNA expression in all prostate
tissue samples compared with the average ratio of normal samples. Two-
fold increased or decreased expression was considered significant.

Semiquantitative reverse transcription-PCR for the detection of
DLC-1 expression in prostate cell lines was carried out using HotStarTaq
DNA polymerase (Qiagen). Samples were defined as DLC-1 positive if a
PCR product was detectable after 35 cycles of amplification. The
primers used (DLC-1F and DLC-1R; GAPDH-F and GAPDH-R) are
listed in Table 1.

Southern blot. For each tissue sample and cell line, 10 ug DNA was
digested to completion with EcoRI and resolved on 0.8% agarose gels.
DLC-1 fragments (465 bp), amplified with primers DLC-1F and
DLC-1R, were labeled with {«->*?P]dCTP using the Prime-It II Random
Primer Labeling kit (Stratagene, La Jolla, CA), hybridized overnight, and
exposed for 72 hours on a Storm Phosphorlmager (Amersham
Biosciences, Piscataway, NJ]). ImageQuant software (Amersham Bio-
sciences) was used for quantifying the signal intensity of the fragments.
The results were normalized by GAPDH before data analysis for all
prostate tissue samples.

Methylation-specific PCR. Genomic DNA extracted from each sample
was modified by sodium bisulfite using EZ DNA Methylation kit (Zymo
Research, Orange, CA) according to the manufacturer’s instructions. For
the detection of DLC-1 gene aberrant methylation, the modified DNA
was amplified using primers specific for the methylated sequence (MSP-F
and MSP-R; Table 1). For quality control of the bisulfite modification
process, the modified DNA was also amplified using primers specific for
the unmethylated sequence of this gene (USP-F and USP-R; Table 1). PCR
was done in a 50 pL reaction volume using HotStarTaq DNA polymerase.
CpGenome Universal Methylated DNA (Chemicon, Temecula, CA) was
used as a positive control for the methylated reactions. Products were run
on 2% agarose gels and visualized under UV illumination.

Sodium bisulfite DNA sequencing. The bisulfite-modified DNA was
also amplified by PCR using the primers Bis-DLC-F and Bis-DLC-R
(Table 1). PCR products were then subcloned into the pCR2.1-TOPO
vector using a TA Cloning kit (Invitrogen). To determine the
methylation status of the 5’ CpG island of the DLC-1 gene, four clones
from each plate were sequenced using an ABI PRISM Dye Deoxytermi-
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nator Cycle Sequencing kit and analyzed on an ABI PRISM 377 DNA
Sequencer (Applied Biosystems).

Trichostatin A and 5-aza-2'-deoxycytidine treatment. Cells from DLC-
1-negative prostate carcinoma cell lines, plated at a density of 2 x 10° per
100-mm dish, were treated with 1 pmol/L 5-aza-2'-deoxycytidine (5-aza-
dC; a DNA methyltransferase inhibitor; Sigma-Aldrich, St. Louis, MO) for
72 hours, 500 nmol/L trichostatin A [a histone deacetylase (HDAC)
inhibitor] for 12 hours (Sigma), or a combination of 5-aza-dC (for
72 hours at 1 pmol/L) and wrichostatin A (added only during the last
12 hours at 500 nmol/L). All experiments were conducted in triplicates.

Chromatin immunoprecipitation assay. Chromatin immunoprecipi-
tation assay kit (Upstate Biotechnology, Lake Placid, NY) was used
according to the method recommended by the manufacturer. Briefly,
cells were plated at a density of 10° to 107 per 100-mm dish and
cultured for 24hours followed by 12 hours of culture with 500 nmol/L
trichostatin A. Subsequently, chromatin was solubilized and subjected
to sonication to obtain DNA fragments with an average size of 200 to
1,000 bp. Chromatin immunoprecipitation was carried out by
incubation with 4 pg anti-acetyl histone H3 antibody (Upstate
Biotechnology) and a no-antibody immunoprecipitation as control.
Ten percent of precleared lysate was saved for each sample to determine
the input chromatin amount. Immunoprecipitated DNA was used as a
template for PCR of the DLC-1 promoter. The primers used (ChIP-F
and ChIP-R) are listed in Table 1.

Western blot. Tissues and cells were lysed in 100 pL CelLytic MT Cell
Lysis Reagent (Sigma) containing a protease inhibitor cocktail (Sigma).
Total protein concentration was determined by the BCA Protein Assay
kit (Pierce, Rockford, 1L). Equal amounts of total protein were resolved
by SDS-PAGE and subjected to Western blot analysis. Human
monoclonal anti-DLC-1 (1:100; clone 3; BD Biosciences PharMingen,
Mountain View, CA) and anti-GAPDH (1:5,000; clone 6C5; Chemicon)
were used as primary antibodies. A bovine anti-mouse IgG horseradish
peroxidase conjugate (1:4,000; Santa Cruz Biotechnology, Santa Cruz,
CA) was used as the secondary antibody. Proteins were transferred from
the gels to nitrocellulose membranes (Invitrogen), which were
developed using the SuperSignal West Pico Chemiluminescent kit
(Pierce). Films were scanned and protein band signal intensity was
measured with Adobe Photoshop 7.0 (Adobe, San Jose, CA). After
normalization with GAPDH, the relative fold difference of DLC-1
protein expression in all prostate tissue samples compared with the
average expression of normal samples was calculated. Two-fold
increased or decreased expression was considered significant.

Statistical analysis. The association of DLC-1 methylation and
mRNA and protein expression with patients’ clinical and histopatho-
logic variables was analyzed with the %2 test (for categorical data),
using Fisher’s exact test when indicated by the analysis, or with the
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Mann-Whitney U test (for continuous variables). For the trichostatin A
and 5-aza-dC experiments, mean and SE were calculated. Student's ¢ test
was used to compare these values with the ones obtained from the
corresponding control experiments. All statistical analyses were two
sided and done with SPSS 11.5 (SPSS, Chicago, IL). P < 0.05 was
considered statistically significant.

Results

To determine whether DLC-1 is deregulated in prostate
cancer and benign prostatic hyperplasia, we examined func-
tional and structural alterations of the gene. The results of
DLC-1 methylation and mRNA and protein expression in
prostate carcinomas, adjacent normal tissue from prostate
carcinoma patients, benign prostatic hyperplasias, and normal
prostatic tissues from noncancerous individuals are schemati-
cally represented in Fig. 1A. Whereas DLC-1 mRNA was
abundant in 9 of 10 (90%) normal prostatic tissues, down-
regulation or loss of DCL-1 expression was found by
quantitative real-time reverse transcription-PCR in 10 of 27
(37%) prostate carcinomas and 5 of 21 (24%) benign prostatic
hyperplasias. Loss of DLC-1 protein expression was detected by
Western blot in 8 of 27 (30%) prostate carcinomas and in 11 of
21 (52%) benign prostatic hyperplasias. Representative exam-
ples are shown in Fig. 1B. DLC-1 mRNA and protein were not
expressed in 2 of 3 adjacent tissues from patients with prostate
carcinoma and in 1 normal prostatic tissue (Fig. 1A).

To see whether the loss of DLC-1 mRNA expression was
associated with genomic deletions, we subjected all normal,
benign, and malignant prostate samples along with the
prostate carcinoma cell lines to Southern blot. The analysis
of genomic DNA from normal tissue samples revealed a
fragment of ~ 4.5 kb. Although no homozygous deletions were
detected in either primary prostate carcinomas, benign
prostatic hyperplasias, or prostate carcinoma cell lines, in 3
prostate carcinoma cases (PCA19, PCA21, and PCA22) and 1
benign prostatic hyperplasia sample (BPH12), a 50% decrease
in the signal intensity of the DLC-1 band was observed,
suggesting that genomic deletion is unlikely to be responsible
for the loss of DLC-1 expression in benign or malignant
prostatic disease (Fig. 2).

To determine whether the loss of DLC-1 expression was
mediated by promoter hypermethylation, the methylation
status of the 5" CpG island of DLC-1 gene was determined by
methylation-specific PCR (MSP). DLC-1 promoter contains
CpG islands of 700 bp, with a GC content of 72.5% and a CpG

N1 PCA21 PCA22 PCA26 BPH4 BPHS

i =

DLC-1 |
(4.5kb) |

GAPDH
(9.3Kb)

Fig. 2. Southern blot analysis of DLC-1gene. Genomic DNA was digested with
restriction enzyme Eco Rl for the detection of DLC-1or with Bam H for the detection
of GAPDH. Hybridization was done using a DLC-1 cDNA specific probe, which
corresponds to 4.5 kb, and a control probe (GAPDH) for DNA loading (which
corresponds to 9.3 kb).
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observed/expected ratio of 0.88, thus satisfying the criteria for
a CpG island (Fig. 3A). MSP assay was employed to assess
the methylation status of several CpG dinucleotides within the
5 CpG island. A few examples are illustrated in Fig. 3B. All
tissue samples exhibited the bands that correspond to either
unmethylated (178 bp) or methylated (172 bp) CpG island.

The unmethylated band, which was observed in all prostate

carcinomas and benign prostatic hyperplasias, is probably due
to inherent contamination with normal cells or partial methy-
lation. MSP analysis revealed methylation in 13 of 27 (48%)
prostate carcinomas and 15 of 21 (71%) benign prostatic
hyperplasias (Fig. 1A). Both methylated and unmethylated
bands were detected by MSP in LNCaP cells. The methylation
level was significantly higher in prostate carcinomas and benign
prostatic hyperplasias compared with normal samples (Fisher's
exact test, P = 0.006 and P < 0.001, respectively). In prostate
carcinomas, the frequency of DLC-1 methylation was higher
in patients ages >70 years compared with younger patients
(X2 test, P = 0.006), whereas DLC-1 mRNA expression was
lower (Fisher's exact test, P = 0.011; Table 2). There was no
statistically significant correlation between DLC-1 hypermethy-
lation and mRNA or protein expression and prostate-specific
antigen (PSA) levels, tumor-node-metastasis staging, or Glea-
son score in prostate carcinoma samples (Table 2). However,
there was a significant association between DLC-1 methylation
status and PSA blood levels in benign prostatic hyperplasia
specimens (Mann-Whitney U test, P = 0.029; Table 3).

To gain more information on the methylation status,
particularly for the upstream region of the basic promoter
and around the translation start sites, a 292-bp fragment of the
DLC-1 promoter region (Bis-DLC), containing 35 CpG dinu-
cleotides (Fig. 3A), was sequenced, after sodium bisulfite
modification, in a normal prostatic tissue (N,), a prostate
carcinoma cell line (LNCaP), and in the 13 prostate carcinoma
samples that were found to be methylated by MSP (Fig. 1A;
ref. 22). Consistent with the MSP data, we found that the CpG
island was unmethylated in the normal prostate sample but
exhibited frequent, localized methylation in the LNCaP cell line
and in 13 prostate carcinomas. Representative examples,
displaying extensive hypermethylation at the CpG dinucleo-
tides in a prostate carcinoma sample (PCA3) and lack of
methylation in the normal prostate sample N, are shown in
Fig. 3C. Bisulfite DNA sequencing revealed a variable pattern of
methylated cytosine residues in the priming sites and else-
where, especially at 2, 7, 9, 13, 15, and 17 CpG loci (Fig. 3D),
which may have affected the efficiency of MSP and could be
responsible for the lack of correlation between methylation and
DLC-1 mRNA in certain prostate carcinoma samples.

An alternative epigenetic mechanism for gene silencing or
down-regulation is histone deacetylation. In the prostate carci-
noma cell lines PC-3, LNCaP, and 22Rv1, DLC-1 mRNA and
protein (data not shown) were either undetectable or reduced
in abundance (Fig. 4A). To ascertain whether HDAC activity,
which is essential for maintaining histone deacetylation levels,
is involved in the repression of DLC-1 expression, the three
DLC-1-negative cell lines (PC-3, LNCaP, and 22Rv1) were trea-
ted with trichostatin A, a HDAC inhibitor. A 9.6-fold (Student’s
t test, P = 0.004), 29.8-fold (P < 0.001), and 41.1-fold
(P < 0.001) increase in DLC-1 transcripts was detected in PC-3,
LNCaP, and 22Rvl1 trichostatin A-treated cells, respectively
(Fig. 4B). Combined 5-aza-dC (a DNA methyltransferase
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N1 OOOOOOOOOOOOOOQOOOOOOOOOOOOOOOOOOOO be methylated by MSP. Each circle in the
PCa2 OOOOOOOOOOOOOOOO{DOOOOOOOQOOGOOOOOOQ figure represents a single CpG site. For each
PCA3 @OOOOOOOGOGOOOOOOOOOOOOOOOOOOOOQOOO DNA sample, the percentage of methylation
PCAS OOQOOQOOOOOOOOOOOOOOOOOO()OOOOOOOOOO at a single CpG site was calculated from the
PCA7 00@@OOC‘OOQOOOO@OOOOOOOOOOOOOOOOOODO sequencing results of four independent
PCAS OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO clones.
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inhibitor) and trichostatin A treatment of LNCaP cells, which Discussion

have a partially methylated allele, exerted a synergistic effect on
the level of DLC-1 reexpression. The effect of each drug alone
was a 5.4-fold increase (P = 0.025) for 5-aza-dC and a 29.8-fold
increase (P < 0.001) for trichostatin A. Combining 5-aza-dC
and trichostatin A resulted in a 122.8-fold increase (P = 0.003)
of DLC-1 transcripts (Fig. 4C).

Chromatin immunoprecipitation assay, using anti-acetylated
histone H3 antibody, was used to provide direct evidence that
trichostatin A mediates DLC-1 mRNA reexpression by modu-
lating acetylation status of the promoter region. From 22Rvl
cells, which were highly responsive to trichostatin A treatment,
formaldehyde cross-linked protein chromatin complexes
were immunoprecipitated and genomic DNA was analyzed
by PCR using primers that recognize the DLC-1 promoter
region. A significant amount of acetylated histone H3 asso-
ciated with the DLC-1 promoter was detected only in
trichostatin A - treated cells (Fig. 4D).

Clin Cancer Res 2006;12(5) March 1, 2006

Our results show that the transcriptional silencing of DLC-1
by two epigenetic mechanisms is common and may be
involved in the pathogenesis of prostate cancer and benign
prostatic hyperplasia. Although region 8p21 -22, which harbors
DLC-1, does not correspond with a fragile site, its propensity
for deletion is similar to that of the most unstable and
vulnerable fragile sites (34, 35). However, inactivation or
down-regulation of DLC-1 mRNA and protein expression in
prostate carcinomas, prostate carcinoma cell lines, and benign
prostatic hyperplasias was primarily caused by promoter
hypermethylation and histone deacetylation and only a small
fraction of cases exhibited heterozygous genomic deletions.
Previously, it has been shown that the frequency of 8p22
deletion is higher in cancer patients with tumor-node-metastasis
stage T; or higher than T, (6). On the contrary, the DLC-1 locus
was not deleted in this series of prostate carcinomas. Promoter
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variables in prostate carcinoma patients

Table 2. Correlation between DLC-7 methylation and mRNA and protein expression with clinical and histologic

Methylation P* mRNA expression P’ Protein expression P’
Present Absent Normal Reduced Normal Reduced

Age (y)
<70 3 10 0.006 12 1 0.011 1 2 0.378
>70 10 3 5 8 8 5

PSA (ng/mL)
10 7 7 1.000 7 7 0110 8 6 0.081
>10 6 6 10 2 1" 1

Stage (tumor-node-metastasis)
Ty-Ty 5 5 1.000 5 5 0.234 7 3 1.000
T3-Ty 8 8 12 4 12 4

Gleason score
2-6 6 7 0.695 8 5 1.000 8 5 0.378
7-10 7 6 9 4 1 2

NOTE: Bolded entries indicate significance.
*x 2 test.
tFisher’s exact test.

methylation seems to be associated with human cancer at least as
frequently as disruption of tumor suppressor genes by mutation
or deletion, and many genes modified by promoter methylation
have classic tumor suppressor functions (16, 36). Frequent
structural and functional alterations of the DLC-1 gene and its
antioncogenic activity in several common cancers indicate that
this gene is emerging as a bona fide tumor suppressor gene.
Recently, by microarray analysis of 5-aza-dC-treated prostate
carcinoma cell lines, DLC-1 was identified among 50 candidate
genes for epigenetic silencing and with possible involvement in
tumor suppression in prostate cancer (37).

Histone deacetylation is also an important component of
DLC-1 silencing as shown in our experiments with the cell lines
derived from prostate carcinomas. In the three DLC-1-negative
cell lines, trichostatin A restored DLC-1 expression to various
degrees. In LNCaP cells, in which DLC-1 promoter is partially
methylated, the combined 5-aza-dC and trichostatin A treat-

ment had a synergistic effect on DLC-1 expression. This cell
response is consistent with the evidence generated in several
studies, showing that gene silencing associated with methyla-
tion and histone deacetylation can be converted to changes
adequate for gene activation (reviewed in ref. 36).

Our results show that DLC-1 gene promoter is methylated in
prostate carcinomas, adjacent normal tissue from patients with
prostate carcinoma, and benign prostatic hyperplasias but not
in normal prostatic tissue samples from noncancerous individ-
uals. The incidence of prostate cancer increases considerably
with age and our statistical analysis revealed an association of
DLC-1 aberrant methylation with aging (38). This correlation
remains to be confirmed with increasing sample size. The
significance of DLC-1 methylation in adjacent normal tissue of
two prostate carcinoma patients is unclear. One can speculate
that it may reflect a wider spread of malignancy than was
originally determined by the histologic examination.

Table 3. Correlation between DLC-T methylation and mRNA and protein expression with clinical variables in benign
prostatic hyperplasia patients
Age (mean + SE, y) P* PSA (mean + SE, ng/ml) P*
Methylation
Present (n = 15) 729+14 0.41 478 + 0.96 0.029
Absent (n = 6) 75.8 + 43 156 + 0.34
mRNA expression
Normal (n = 16) 739+18 0.678 410 + 0.87 0.283
Reduced (n =5) 730+ 37 3.07 £1.67
Protein expression
Normal (7 = 10) 741 +2.2 0.887 372 +102 0.833
Reduced (n =11) 734+ 23 3.98 + 116
NOTE: Bolded entry indicates significance.
*Mann-Whitney U test.
www.aacrjournals.org 1417 Clin Cancer Res 2006;12(5) March 1, 2006
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Fig. 4. Restoration of DLC-7 expression in vitro by DNA
methyltransferase and HDAC inhibitors. 4, reverse
transcription-PCR analysis of DLC-T expression in
prostate carcinoma cell lines. Among 5 prostate
carcinoma lines (DU145, LNCaP, PC-3, SP3031, and
22Rw1) and 2 normal prostate epithelial lines (RWPE-1
and PWR-1E), DLC-1 is expressed at a negligible level in
three prostate carcinoma cell lines. GAPDH was used
as an internal control (L ; 100-bp DNA ladder).

B, expression of DLC-T mRNA in PC-3, LNCaP, and
22RW cells after 12-hour exposure to trichostatin A.
The level of expression is represented as fold increase
over the control untreated cells. Bars. SE of three
independent experiments. *, P {0.05; **, P {0.01 **",
P € 0.001, relative to control. C, increased expression

of OLC-7 mRNA in LNCaP cells after treatment with
5-aza-dC (1 pmol/L) for 72 hours or trichostatin A
(754 ; 500 nmol/l) for 12 hours or by combined
treatment with both agents. The level of expression is
represented as fold increase over the control untreated
cells. Bars, SE of three independent experiments.

S L PL0.05; ", P<0.01 """, P {0.001, relative to control.
D. chromatin immunoprecipitation analysis of histone
H3 acetylation on the DLC-7 promoter. 22Rv1 cells were
treated with 500 nmol/L trichostatin A for 12 hours and
the cell lysate was immunoprecipitated with an antibody
to acetylated histone H3. DNA fragments from
chromatin immunoprecipitation assays were amplified
using promoter primer sets, Trichostatin A increased
acetylation of histone H3 on the DLC-T promoter. Input
for each reaction was used for internal control of
samples loading. An aliquot precipitated without
antibody was employed as negative control (L ; 100-bp
DNA ladder).

A high incidence of DLC-1 methylation was also detected
in benign prostatic hyperplasias. In contrast to high-grade
prostatic intraepithelial neoplasia and proliferative inflamma-
tory atrophy, benign prostatic hyperplasias are not considered
premalignant or predisposing lesions to the development of
prostate carcinomas (39). Benign prostatic hyperplasias devel-
op in the transitional zone of the prostate, whereas prostate
carcinomas usually develop in the peripheral zone of the gland.
However, ~25% of prostate carcinomas are detected in the
transitional zone; thus, one cannot exclude the possibility that
the two diseases are linked (40). Benign prostatic hyperplasias
are diagnosed in men over their fifties (38). The average age of
our benign prostatic hyperplasia patients was 73 years, and
there was a statistically significant correlation between DLC-1
methylation and PSA blood levels. It is possible that down-
regulation or silencing of DLC-1, which encodes a protein with
tumor suppressor function, or of other putative tumor
suppressor genes commonly methylated in benign prostatic
tissue are age-dependent early events that promote initiation
and progression of cellular hyperplasia (38, 41).

Methylation changes in normal tissues seem to indicate a risk
for developing cancer rather than the presence of cancer in an
individual (16). The absence of DLC-1 methylation in normal
prostatic tissues from our noncancerous subjects is consistent
with a mutation study showing that DLC-1 is not linked, as was
previously suspected, to a prostate cancer susceptibility gene
(42, 43). Because all normal prostate samples (N,-N,,; Fig. 1A)
derived from young individuals, future studies are warranted to
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examine the methylation of DLC-1 in nonneoplastic tissues
from older subjects.

Our understanding of the mechanisms responsible for gene
silencing in neoplasias has clinical relevance for the risk
assessment, early diagnosis, prognostic monitoring, treatment,
and prevention of cancer (36). A recent comprehensive study
highlighted the limitations of the PSA test for prostate cancer
screening and underlined the need for the development of
biomarkers for early detection and prognosis of the disease
(44). Aberrant methylation is one of the earliest alterations in
the development of cancer, including prostate carcinomas (38).
Methylation of DLC-1, as a part of a panel of biomarkers, could
be useful for the detection and risk assessment of prostate
cancer and of its treatment (38, 45).

Because inhibitors of DNA methyltransferase and HDAC can
induce the restoration of DLC-1 expression, the DLC-1 protein
may also represent a potential target for novel therapies. Zebu-
larine, a new and highly effective DNA demethylating agent, and
several HDAC inhibitors are attractive therapeutic approaches
(46, 47). lLastly, if DLC-1 has tumor suppressive activity in
prostate cancer, its silencing by promoter methylation may
increase the risk of metastasis. Therefore, DLC-1 up-regulation
may be a good candidate for gene therapy of prostate cancer.
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