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Introduction: The placental anticoagulant protein Annexin A5 (ANXAS) is a multifunctional protein that is highly
expressed on the apical surfaces of syncytiotrophoblasts, and plays an important role in haemostatic regulations,
maintaining blood fluidity of the placenta. The aim of this study was to investigate the expression of ANXA5 in
pregnancies complicated by preeclampsia (PE).

Materials and Methods: Placental tissue samples were collected from 23 pregnancies with PE and 34 normal
pregnancies. ANXA5 mRNA levels were measured by quantitative Real-Time PCR (qPCR), while ANXA5 protein

i%vgirgs/.\s expression was measured by Western Blot (WB) and immunohistochemistry.
Preeclampsia Results: ANXA5 mRNA expression in PE samples was lower than 1% of its expression in normal samples
Biomarker (mean 4 SD: 0.002 &£ 0.004 vs. 0.55 £ 0.38, p < 0.001), while ANXAS5 protein levels in PE samples were
Placenta approximately at 65% of the average normal expression (mean 4 SD: 0.53 + 0.30 vs. 0.81 + 0.25,
Expression p = 0.001). Immunohistochemical analysis also verified the above results, since PE placentas tended to have
low labelling indexes (LIs), in contrast to controls which demonstrated high LIs (p = 0.020). Statistical analysis
of the WB data revealed that ANXAS5 protein expression was increased in PE smokers vs. PE non-smokers
(mean =+ SD: 0.64 4+ 0.23 vs. 041 £ 0.33, p = 0.027).
Conclusions: These results suggest that ANXA5 downregulation could be part of the pathophysiology of PE
and the possible impairment in coagulation processes, which are seen in pregnancies that demonstrate PE. Fur-
ther studies may investigate whether ANXA5 could be used as a biomarker for the early detection of PE and for
the prediction of its severity.
© 2013 Elsevier Ltd. All rights reserved.
Introduction and mortality [1,2]. In particular, it is associated with adverse fetal

Preeclampsia (PE) is a pregnancy-specific disorder characterized by
hypertension and significant proteinuria developed at or after 20 weeks
of pregnancy [1]. PE is a multisystem disease of widespread vascular
endothelial malfunction and vasospasm, which complicates 2% of all
pregnancies. It is a major cause of maternal and perinatal morbidity
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outcomes, including fetal growth restriction (FGR), placental abruption,
oligohydramnios and non-reassuring fetal surveillance. Although the
exact pathophysiologic mechanism is not clearly understood, PE is
primarily a disorder of placental dysfunction, leading to systemic endo-
thelial dysfunction with associated vasospasm. In most cases, histopath-
ologic examination of the placenta demonstrates evidence of placental
insufficiency with associated abnormalities, such as placental infarction
[3], retroplacental hematoma [4], blood infiltrates in the villous stroma,
immature villi, increased fibrin deposition in perivillous space [5], and
inflammatory placental decidual vasculopathy [6-11]. Abnormal tropho-
blastic invasion of the endometrium and impaired adaptation of the
maternal decidual arterioles, as well as diffuse arterial microthrombosis,
have been shown to underlie the process of abnormal placentation and
are considered essential in the development of PE [12].

The placental anticoagulant protein annexin A5 (ANXA5) is a member
of the annexins, a family of calcium-dependent phospholipid-binding
proteins. ANXAS is a multifunctional protein; one of its proposed roles
is the prevention of thrombosis. ANXA5, which is highly expressed on
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the apical surfaces of syncytiotrophoblasts, plays an important role in
maintaining placental integrity in mice [13]. ANXA5 binds with high af-
finity in the presence of Ca?* to negatively charged phospholipids, such
as phosphatidylserine (PS), which is expressed on the external leaflet of
the trophoblast membrane [14]. Cell membranes with PS exposed at the
outside provide a catalytic surface for coagulation reactions, resulting in
a high rate of prothrombinase complex formation and the activation of
coagulation [15,16]. Therefore, ANXA5 forms an antithrombotic shield
around the procoagulant anionic phospholipids on the trophoblast sur-
face, precluding the phospholipid-dependent coagulation reactions [17].

Since ANXAS5 has a distinct role in maintaining blood fluidity in the pla-
cental circulation, it also presents an attractive candidate protein, linking
placental haemostatic malfunction to the pathophysiology of PE. The aim
of the present study was to investigate the possible role of ANXAS5 in PE
by comparing mRNA and protein levels in placentas derived from pregnan-
cies complicated by PE and those from uneventful pregnancies.

Materials and Methods
Sample Collection

This study was approved by the Research and Ethics Committee of
the University Hospital of Heraklion, Crete, Greece. Informed consent
was obtained from all participants. Placentas were obtained after
vaginal deliveries or caesarean sections from 23 women with singleton
pregnancies that where complicated with PE and from 34 uncomplicated
pregnancies. Biopsy specimens of the medial part of the maternal-fetal
interface were obtained from each placenta, in such a way that each
sample contained the decidua basalis and villous placenta, but not the
chorionic plate [18,19]. Areas involving gross calcifications or infarcts
were avoided. Contamination from fetal membranes was also minimized.
Tissue biopsies were snap-frozen and stored at —80 °C until use. The rest
of the placenta was sent for routine histological examination.

Clinical Definitions and Sample Description

Preeclampsia was defined as hypertension in previously normoten-
sive women after 20 weeks of gestation (systolic blood pressure
>140 mmHg or diastolic blood pressure >90 mmHg) on at least two oc-
casions associated with proteinuria (>300 mg in a 24-hour urine collec-
tion or one dipstick measurement >2 +) [1]. Control group included
women with uncomplicated, normotensive singleton pregnancies who
delivered healthy, appropriate-for-gestational-age babies. Exclusion
criteria were stillbirth, multiple gestations, chorioamnionitis, pre-
pregnancy hypertension, renal disease, as well as chromosomal abnor-
malities and fetal anatomical defects. Baseline demographic characteris-
tics and medical history information (maternal weight, height, age,
parity, smoking, mode of delivery, fetal gender and birth weight) were
recorded for all participants (Table 1).

RNA Extraction and cDNA Synthesis

RNA was extracted using the TRIzol® reagent (Invitrogen, Carlsband,
CA, USA), following the manufacturer’s protocol. RNA concentration
and purity were measured on a NanoDrop 1000 spectrophotometer
(NanoDrop Products, Wilmington, DE, USA).

c¢DNA was synthesized with the Thermoscript™ RT kit (Invitrogen),
following the manufacturer’s instructions, using random hexamers as
amplification primers. cDNA was stored at —20 °C until use.

Quantitative Real-Time Polymerase Chain Reaction (qPCR) Assay

ANXA5 (Forward primer: 5'-CTTGGGCACAGATGAGGAGAGCA-3’;
Reverse primer: 5-AAGCCGAGAGGGTTTCATCAGAGC-3’; Amplicon
size: 182 bp) mRNA expression was measured using a qPCR assay
with SYBR® Green dye, with 3-Actin (Forward primer: 5’-CGGCATCG

Table 1
Clinical characteristics of the study groups.
Preeclampsia Normal P-value
pregnancies pregnancies

Cases (n) 23 34

Maternal age 303 £ 5.0 279 + 5.1 0.10°
(mean + SD, years)

BMI (mean =+ SD) 29.7 + 8.7 245 4+ 59 0.004°

Maternal weight gain 106 + 7.1 154 £ 58 0.007*
(mean + SD, Kg)

Gestational age 337 £33 388 £ 1.5 <0.001*
at delivery
(mean =+ SD, wks)

Birth weight 1939 + 901 3193 + 450 <0.001*
(mean + SD, gr)

Mode of delivery

Vaginal (%) 1(4.3) 23 (67.6) <0.001"
Caesarean section (%) 22(95.7) 11 (32.4)

Parity

Nulliparous (%) 13 (56.5) 18 (52.9) 0.79°
Multiparous (%) 10 (43.5) 16 (471

Child gender

Male (%) 9(39.1) 13 (38.2) 0.95°
Female (%) 14 (60.9) 21 (61.8)

Smoking 0.21°
Yes (%) 12 (52.2) 12 (35.3)
No (%) 11 (41.8) 2 (64.7)

SGA Babies

Yes (%) 16 (69.6) 2 (5.9) <0.001"
No (%) 7 (30.4) 32(94.1)

SD: Standard Deviation; SGA: Small for Gestational Age.
2 Student’s T test (2-tailed);
b Chi-square or Fisher’s exact test (2-tailed).

TCACCAACTG-3’; Reverse primer: 5'-GGCACACGCAGCTCATTG-3/;
Amplicon size: 70 bp) as an internal control. cDNA (1 pl) was amplified
in a PCR reaction (final volume 20 pl) containing 2 x Brilliant SYBR®
Green qPCR Master Mix (Stratagene, La Jolla, CA, USA) and 300 nM of
each primer. PCR conditions were: initial denaturation at 95 °C for
10 min; 40 cycles of amplification, comprised of denaturation at 95 °C
for 20 sec, annealing at 60 °C for 30 sec and elongation at 72 °C for
20 sec; melt-curve analysis, in which the temperature was increased
from 60 to 95 °C at a linear rate of 0.2 °C/sec. PCR experiments were
conducted on an Mx3000P real-time PCR thermal cycler using software
version 4.10 (Stratagene). ANXA5 mRNA expression was normalized by
dividing its value by the same sample’s 3-Actin value. The normalized
values of PE samples were divided by the average normalized values
of normal samples, providing the relative expression of ANXA5 in a PE
specimen in relation to the control group. A two-fold (a value >2) in-
creased (i.e. overexpression) or decreased (a value <0.5) (i.e. downreg-
ulation) expression was considered biologically significant.

Protein Extraction and Western Blot (WB)

Proteins were extracted with the T-PER® Tissue Protein Extraction
Reagent (Thermo Fisher Scientific, Waltham, MA, USA), following the
manufacturer’s protocol, and were stored at —80 °C until use.

30 pg of each protein specimen were separated by 12.5% SDS-
polyacrylamide gel electrophoresis and were transferred to 0.45 pm
nitrocellulose membranes (Thermo Scientific). Membranes were incu-
bated with 1 pg/ml of mouse anti-ANXA5 (36 kDa) monoclonal anti-
body VAA-33: sc-65391 (Santa Cruz Biotechnology, Dallas, TX, USA) or
mouse anti-Actin (43 kDa) antibody MAB1501 (Millipore, Billerica,
MA, USA). After applying the AP124P goat anti-mouse peroxidase con-
jugated secondary antibody (Millipore), immunodetection was per-
formed with the SuperSignal® West Pico Chemiluminescent Substrate
(Thermo Scientific), detected on Super RX X-ray films (Fujifilm, Tokyo,
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Japan). Protein expression was quantified using the Photoshop CS2
image analysis software (Adobe Systems, San Jose, CA, USA).

Histology — Immunohistochemistry (IHC)

The whole placenta was examined grossly and then sampled for routine
microscopical examination with Hematoxylin-Eosin staining. Subsequent-
ly, 4 um sections of selected paraffin-embedded tissue containing the
basal plate and placental parenchyma were stained with the mouse anti-
ANXA5 monoclonal antibody VAA-33: sc-65391 (Santa Cruz) diluted 1:50
in bovine serum albumin/Tris-buffered saline (BSA/TBS), pretreated in cit-
rate buffer (pH 6.0). Secondary antibody and visualization were applied
by the Envision Detection System (DAKO, Glostrup, Denmark).

ANXAS5 Scoring and Assessment of Labeling Index (LI)

Immunohistochemical staining was assessed using one histological
section per case (measuring 2 x 1 cmin average). Any staining intensi-
ty above background of immunolabeled cells was considered positive
ANXA5 expression. For LI determination the SigmaScan Pro 5.0 software
was used (Systat Software, Chicago, IL, USA). A percentage positive
score was assessed in reference to the total area of immunolabeled
cells within the placental parenchyma included in the section.

Statistical analysis

Pearson’s correlation or the non-parametric Spearman’s rho test was
used to examine the association of ANXA5 mRNA and protein levels
with continuous variables [maternal age, body mass index (BMI),
weight gain, gestational age at delivery and birth weight centile]. More-
over, their association with categorical data (smoking habits, mode of
delivery, child gender and parity) was examined using Student’s t test,
or the nonparametric Mann-Whitney U- and Kruskal-Wallis H-tests.
Additionally, the chi-square () or Fisher’s exact tests were used to
examine ANXA5 expression levels with the various clinicopathological
parameters after stratification. Statistical analyses were two-sided, and
were performed with SPSS 11.5 (SPSS, Chicago, IL, USA). Statistical
significance was set at the 95% level (P < 0.05).

Results
Clinical Data analysis

Women with PE gained less weight during their pregnancies
(p = 0.007), gestation was 5 weeks shorter (p <0.001) and birth
weight was at least 1 Kg lower (p < 0.001). Additionally, they were
more obese (p <0.004), gave birth with a caesarian section
(p < 0.001) and to smaller babies (p < 0.001) (Table 1).

Real-Time PCR analysis

qPCR analysis revealed that the average normalized ANXA5 mRNA
expression in PE samples was less than 1% of its expression in normal
samples (mean + SD: 0.002 + 0.004 vs. 0.55 4 0.38, p < 0.001), with
22/23 (96%) of samples being downregulated and only 1/23 (4%) having
normal mRNA expression (Fig. 1).

Western Blot analysis

Western Blot analysis only partially verified the above results, since
ANXAS5 protein was downregulated in 13/23 (57%) PE samples when
compared with normal specimens, with expression levels approximately
at 65% of the average normal expression (mean + SD: 0.53 + 0.30 vs.
0.81 £ 0.25, p = 0.001) (Fig. 2A, 2B).

Statistical analysis of the WB data revealed that ANXA5 protein
expression was increased in PE women that smoked vs. PE women
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Fig. 1. Representative examples of quantitative Real-Time PCR using SYBR® Green [
detection dye: (A) Amplification plots and (B) Dissociation curves of ANXA5 and
{3-Actin. (C) Box and whisker plots depicting normalized ANXA5 mRNA expression
between preeclamptic patients and controls (p < 0.001).

that were not smokers (mean + SD: 0.64 + 0.23 vs. 0.41 + 0.33,
p = 0.027) (Fig. 20).

Histology - Immunohistochemistry

Uteroplacental vascular disorders were the main histopathological
findings in all PE samples, including macroscopic and microscopic
basal infarcts, retroplacental hematoma, decidual vasculopathy, as
well as areas with histological indications of maternal hypoperfusion
(e.g. increased syncytial knots, reduced vasculosyncytial membranes,
distal villous hypoplasia or villous agglutination). Subacute or chronic
lesions of fetal vessel thrombosis were observed in 6/23 (26.1%) PE
placentas.

ANXA5 immunohistochemical expression was observed in the
perivillous and extravillous trophoblast of all examined placentas. The
staining pattern was heterogeneous with a tendency of ANXA5 positive
cells towards cluster formation at the sites of syncytial knots. Immuno-
staining was mostly visualized as a continuous line along the apical site
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Fig. 2. (A) Representative examples of ANXA5 and 3-Actin Western Blot analysis in preg-
nancies complicated by preeclampsia (PE) and normal pregnancies. (B) Box and whisker
plots depicting normalized ANXA5 protein expression between PE patients and controls
(p = 0.001). (C) Box and whisker plots depicting statistically significant associations be-
tween ANXAS5 protein levels and smoking status in PE patients (mean 4 SD: 0.64 + 0.23
vs. 041 £ 033, p = 0.027).

of the perivillous syncytial cytoplasmic membrane or was localized in
the cytoplasm of isolated trophoblastic cells (Fig. 3A). Extravillous tro-
phoblastic cells also showed perinuclear localization of immunostain-
ing. The expression pattern was granular, consisting of fine dusty and
coarse granules (Fig. 3A). As a rule, in both PE and control placentas,
staining intensity was increased within clusters of syncytial knots, as
well as in areas of villous adhesion, as seen in hypoperfused or freshly
infarcted areas (Fig. 3B). Clusters of nonviable trophoblastic cells
entrapped within old infarcts were invariably positive (Fig. 3D).

PE placentas and controls were classified in 3 categories according to
the labelling index (LI = Percentage x Staining Intensity): those with
high (>66%), medium (33-66%) and low (<33%) LI. PE placentas had
lower LIs (22% high; 11% medium; 67% low) than controls (80% high;
20% medium) (p = 0.020). In addition, control placentas presented a
diffuse pattern of staining along the perivillous syncytiotrophoblast
lining (Fig. 3B). In contrast, PE placentas showed a focal staining pattern,
accentuated within clusters of syncytial knots in the context of the
Tenney-Parker phenomenon (Fig. 3C, 3D); diffuse perivillous lining
was prominent only in areas of hypoperfusion indicated by villous
clustering and adhesion.

Discussion

The hypothesis that we investigated in the present study was,
whether placental dysfunction associated with PE correlates with
altered ANXA5 mRNA and protein expression. We found decreased
ANXA5 mRNA and protein levels in placental tissues derived from pre-
eclamptic women compared to those with uncomplicated pregnancies.
Immunohistochemistry confirmed the reduced protein levels, since pre-
eclamptic placentas demonstrated low staining intensities for ANXA5.

ANXAS5 is present on the apical surface of the perivillous tropho-
blasts facing circulating maternal blood. As a result of its localization,
it is capable of promoting the fluidity of maternal blood circulating
through the intervillous space [20], thus ensuring maternofetal nutri-
tion exchange through diffusion [21]. The majority of PE samples exhib-
ited significantly lower ANXA5 mRNA levels compared to controls.
Reduced ANXA5 mRNA has been also reported in previous studies
that assessed placental expression of ANXA5 in women with PE, and
has been correlated with disease onset and the presence of FGR
[22-24]. Protein levels in maternal blood were also reduced in a similar
study [23]. Graded immunohistochemical expression confirmed these
findings and correlated the reduced protein expression with the sever-
ity of PE [25]. However, this finding has not been reproduced by all
researchers, since Ornaghi et al. found ANXA5 expression to be related
only to FGR but not to PE or its clinical severity [22].

Western Blot analysis demonstrated that placentas from the PE
group also exhibited reduced protein levels (albeit only partially).
According to the thromboregulatory action of ANXAS5, reduced protein
expression would allow the binding of coagulation factors to phospho-
lipid surfaces and therefore induce thrombosis. Placental vasculopathy
and ischemic infarcts are associated with PE, particularly in cases
of inherited thrombophilia and antiphospholipid syndrome (APS)
[26,27]. The observed downregulation of ANXA5 transcript and protein
levels probably contributes to thrombotic predisposition and thus to
placental dysfunction.

An alternative explanation for the reduced ANXA5 levels might
be an underlying genetic defect that predisposes to ANXA5 mRNA
down-regulation. Bogdanova and co-workers reported a variation of
four consecutive nucleotide substitutions in the ANXA5 promoter that
form a joint haplotype (M2), which reduces the in vitro activity of
ANXA5 promoter to 37-42% of normal levels [28]. Notably, another
study investigating placentas from patients with either PE or FGR,
showed a reduced ANXA5 mRNA expression in those subjects carrying
the M2 haplotype [29]. Recently, the M2 haplotype was suggested as
a new and relevant risk factor for obstetric complications such as
gestational hypertension and PE [30]. Although, the carriership of the
M2 haplotype has not been examined in our study groups, it could
represent a useful suggestion for future research.

Statistical analysis revealed that PE women that smoked had in-
creased protein levels compared with PE women that did not smoke,
contributing to the less pronounced expression differences between
control and PE placentas. Proteomic analysis of hypoxia-induced
responses in placental cells has previously shown that ANXA5 levels
increase under hypoxia [31]. Maternal cigarette smoking can affect
placental development directly or indirectly by reducing blood flow,
which creates a pathologically hypoxic environment [32,33]. We could
speculate that the increased ANXA5 protein levels found in PE smokers
is a consequence, or at least correlates with the hypoxic features en-
hanced by tobacco consumption during pregnancy. The observed in-
creased staining intensity of ANXA5 in hypoperfused or freshly
infarcted areas of the placenta is consistent with this conclusion.

Preeclampsia is associated with impaired trophoblast invasion and,
as a consequence, inadequate vascular adaptation of decidual arterioles.
The observation in our study that ANXA5 was expressed not only in the
perivillous, but also in the extravillous trophoblast of the decidua
basalis, may suggest a possible implication in the procedure of decidual
vessel remodelling, which underlies the pathogenesis of PE.
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Fig. 3. (A) Immunohistochemical staining pattern of ANXAS5 is more pronounced along the apical site of the syncytial lining (x400). (B) Increased ANXA5 immunohistochemical expres-
sion with a diffuse perivillous staining pattern in a control placenta (x50). (C) and (D) Immunohistochemical expression of ANXA5 in preeclamptic placentas (x50): C and D-left side
(yellow arrows): Reduced LI (<33%) and focal pattern of perivillous immunostaining; D right side (blue arrows): intense staining of trophoblastic cells entrapped within an infarcted area.

Noteworthy, there is a disassociation between ANXA5 mRNA levels,
which are nearly abolished in PE, and protein expression levels, which
are only moderately reduced. This discordance could be explained by
factors that decrease mRNA longevity post-transcriptionally or increase
protein stabilization and reduce degradation post-translationally.
Additionally, ANXA5 levels are not universally upregulated or downreg-
ulated, at least in Systemic Lupus Erythematosus (SLE), in which ANXA5
levels are increased in peripheral blood mononuclear cells (PBMCs),
while they are decreased in serum (26.8 + 3.0 ng/ml for SLE patients
versus 49.0 £ 3.3 ng/ml for controls) [34]. Although we lack data re-
garding ANXAS levels/concentration in the serum of pregnant women
complicated by PE, we could assume that reduced ANXAS5 levels are a
placental-related characteristic and not a systemic finding. This is sup-
ported by our IHC findings, in which ANXAS5 in present in extravillous
trophoblasts of decidual basalis, despite the reduced ANXA5 gene
expression within intravillous cells. This finding should come as no sur-
prise, since hypoperfusion-hypoxic cell compartments are expected to
demonstrate higher ANXAS5 function. Apart from the extravillous tro-
phoblasts, it is also possible that ANXA5 protein could originate from
the plasma pool and/or the circulating cells. There are other possible ex-
planations regarding this discrepancy. Cell-surface ANXA5 molecules
need negative phospholipids for binding [35]. Perhaps one of the
known ANXA5 modifications (such as the R23E mutation) or a yet to
be discovered alteration in the repartition of anionic phospholipids in
the outer membrane of trophoblastic cells in PE, could result in reduced
ANXA?5 cell surface expression. Anti-ANXA5 antibodies could also play
an important role, since they are present in about 20% of PE patients
[36], as well as in SLE patients with thrombotic and thrombocytopenic
complications [37]. Finally, it is well established that gonadotropin-
releasing hormone (GnRH) and human chorionic gonadotropin (hCG)
increase ANXA5 levels [38], while prolactin decreases them [39]. Prolac-
tin interacts with trophoblastic cells, stimulating cell migration and in-
vasion [40], while prolactin levels are very high in preeclamptic

women [41]. It is possible that ANXAS5 levels are reduced because a
prolactin-induced ANXAS5 antagonist is upregulated in the trophoblasts
during PE.

In conclusion, we have demonstrated that the placental expression
of ANXA5 is decreased in pregnancies complicated with PE. These
results suggest that decreased ANXA5 expression and activity could be
directly involved in the impaired mechanism of vascular adaptation
and defective decidual vessels blood fluidity. Further studies are needed
in order to verify our results and to investigate whether ANXAS5 levels
in the maternal circulation could be used as a biological marker for
the early detection of preeclampsia, as well as for the prediction of its
severity and outcome.
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