
Pharmacology & Therapeutics 180 (2017) 99–112

Contents lists available at ScienceDirect

Pharmacology & Therapeutics

j ourna l homepage: www.e lsev ie r .com/ locate /pharmthera
Contrast-induced nephropathy: Basic concepts, pathophysiological
implications and prevention strategies☆
Charalampos Mamoulakis a,⁎,1, Konstantinos Tsarouhas b,1, Irini Fragkiadoulaki c,1, Ioannis Heretis a,
Martin F. Wilks d, Demetrios A. Spandidos e, Christina Tsitsimpikou f, Aristides Tsatsakis c

a Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, Crete, Greece
b Department of Cardiology, University General Hospital of Larisa, Larissa, Greece
c Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71003, Greece
d Swiss Centre for Applied Human Toxicology, University of Basel, CH-4055 Basel, Switzerland
e Department of Virology, Medical School, University of Crete, Heraklion, Crete, Greece
f Department of Hazardous Substances, Mixtures and Articles, General Chemical State Laboratory of Greece, Ampelokipi, Athens, Greece
Abbreviations: AKI, Acute kidney injury; BUN, Blood u
injury molecule-1; L-NAME, (Nw-nitro-L-arginine methyl
creatinine; SOD, Superoxide dismutase.
☆ Associate editor: L.H. Lash.
⁎ Corresponding author.

E-mail address: mamoulak@uoc.gr (C. Mamoulakis).
1 Equal contribution of authors.

http://dx.doi.org/10.1016/j.pharmthera.2017.06.009
0163-7258/© 2017 Elsevier Inc. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Available online 19 June 2017
 Contrast-induced nephropathy (CIN) is reversible acute renal failure observed following administration of iodin-
ated contrast media (CM) during angiographic or othermedical procedures such as urography. There are various
mechanisms throughwhich CMdevelop their nephrotoxic effects, including oxidative stress and apoptosis. CIN is
a real-life, albeit not very rare, entity. Exact pathophysiology remains obscure and no standard diagnostic criteria
apply. The Acute Kidney Injury Network criteria was recently employed but its incidence/clinical significance
warrants further clarification based on recent methodological advancements, because most published studies
to date were contaminated by bias. The current study is a comprehensive review conducted to provide an over-
view of the basic concepts of CIN and summarize recent knowledge on its pathophysiology and the evidence
supporting potential prevention strategies. CIN is expected to increase morbidity, hospital stay and mortality,
while all patients scheduled to receive CM should undergo risk assessment for CIN and high-risk patients may
be considered candidates for prevention strategies. The value of using compounds with antioxidant properties
other than sodium bicarbonate, remains controversial, warranting further clinical investigation.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Contrast-induced nephropathy (CIN) is reversible acute renal failure
observed after administration of iodinated contrast media (CM) during
angiographic or other medical procedures such as urography. The ex-
pected increase of serum creatinine (sCr) generally appears within
48 h after CM exposure, reaching a peakwithin the following 5 days. In-
creased morbidity, hospital stay and mortality is often associated with
CIN (Golshahi, Nasri, & Gharipour, 2014; Rewa & Bagshaw, 2014). CIN
has a considerable prevalence that reaches 15% in high-risk patients
(see below; Section 6. Risk factors of CIN), whereas in ordinary patients
the incidence does not exceed 1% (Rancic, 2016).

CM are non-reabsorbable solutes of high-, low- or isoosmolality,
which act as osmotic diuretics, reducing electrolyte re-absorption
along the nephron and thereby causing an increase in urine output
(Solomon, 2014). Iodinated CM can be ionic or non-ionic, depending
on their solubility in water. First generation CM have really high osmo-
lalities (around 1000–2500 mOsm/kg) compared to plasma (290
mOsm/kg), due to the fact that osmolality, molar concentration and
ionic strength are directly proportional quantities (Pannu, Wiebe,
Tonelli, & Alberta Kidney Disease, 2006). The second generation CM
were mainly characterised by lower solution osmolality of around
400–800 mOsm/kg, through formation of ionic dimers (ioxaglate) or
non-ionic monomers (iopromide, iopamidol, iohexol, ioversol) (Pannu
et al., 2006). The final step in evolution was the development of
isoosmolar CM, such as iodixanol and iotrolan, which are non-ionic di-
meric compounds. Pure low-osmolar CM solutions are actually hypo-
osmolar. Therefore, in order to reach plasma osmolality electrolytes
are added (Jost et al., 2011).

The osmotic properties of CM could account for numerous hemody-
namic alterations, including vasodilatation, increases in circulating
blood volume and peripheral blood flow, and decreases in systemic re-
sistance (hypotension) (McClennan, 1990). Hemodilution effects result
from extravascular water shifts into the bloodstream that contribute to
some of the hemodynamic perturbations associated with high-osmolar
CM administration. Red blood cell changes (crenation and rigidity) and
endothelial damage directly at the injection site accompanied by release
of vasoactive substances, such as serotonin, histamine, prostaglandins,
fibrinolysins, kallikreins, leukotrienes, bradykinin etc., may lead to he-
modynamically altered microcirculation or other physiologic changes
that may cause side effects. Some hemodynamic effects can be related
Fig. 1. Simplified scheme depicting the basic mechanism o
to osmolality and to a lesser degree to the chemotoxic properties of
the CM. These include negative inotropic effects and decrease in myo-
cardial contractility after intra-cardiac injections. Decreased cardiac out-
put and increased pulmonary artery pressure may occur along with
plasma volume changes noted previously. Effects on the cardiac con-
duction system may result in abnormal electrocardiogram patterns,
some of which may be clinically significant depending on the underly-
ing cardiovascular status.

Reduction of osmolality in modern CM has ameliorated their safety
profile (Caiazza, Russo, Sabbatini, & Russo, 2014) at the expense of in-
creased viscosity (Jost et al., 2011). Viscosity strongly depends on iodine
concentration of the solution, increasing exponentially (Seeliger et al.,
2007) and strongly influences renal side-effects. CMwith higher viscos-
ity increase urine viscosity leading to higher tubular pressure that
causes low urine flow rate and clearance, which in their turn prolong
bioavailability, leading to a more pronounced tubular injury (Seeliger
et al., 2010; Ueda, Nygren, Hansell, & Ulfendahl, 1993). High osmolality
could actually reduce exposure through osmotic diuresis and in vitro di-
lution (Lenhard et al., 2012). Animal studies have shown that during ad-
ministration of high viscosity isoosmolar CM, osmotic diuresis is
missing and the dwelling time of CM in the urinary tubules and thus
their bioavailability is higher (Jost, Pietsch, Lengsfeld, Hutter, & Sieber,
2010) (Fig. 1).

To mitigate this effect, current practice mandates a) right choice of
the agent, b) heating of low-osmolar/isoosmolar CM before use because
viscosity is inversely proportional to temperature and c) aggressive hy-
dration around the time of exposure to dilute the agents and decrease
their viscosity (Dorval et al., 2013). Most medical centres no longer
use intravascular, high-osmolar CM to avoid various adverse effects as-
sociated with their use (ACR Committee on Drugs and Contrast Media,
2016). A meta-analysis showed that in patients with underlying renal
insufficiency, nephrotoxicity of CM with low-osmolality is lower com-
pared to high-osmolar CM (Barrett & Carlisle, 1993). It is not clear yet
whether intravenous low-osmolar or isoosmolar CM (iodixanol) are
less detrimental regarding CIN (Dong, Jiao, Liu, Guo, & Li, 2012;
McCullough & Brown, 2011). According to the European Society of Car-
diology and the European Association for Cardio-Thoracic Surgery
guidelines (Authors/Task Forcemembers, 2014), for patientswithmod-
erate-to-severe chronic kidney disease undergoing coronary angiogra-
phy or multi-detector computed tomography, CM volume should be
minimized and isoosmolar should be considered over low-osmolar
f CM viscosity-induced damage (Seeliger et al., 2012).
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agents at the recommendeddose for both of them b350mLor b4mL/kg
or total contrast volume/glomerular filtration rate (GFR) b3.4. Accord-
ing to the American College of Radiology guidelines (ACR Committee
on Drugs and Contrast Media, 2016), extrinsic warming to human
body temperature (37 °C) of iodinated CM could minimize complica-
tions and improve vascular opacification in certain applications, such
as high-rate (N5 mL/s) intravenous low-osmolar CM power injections;
viscous iodinated agent injections (e.g., iopamidol 370); and direct arte-
rial injections using small catheters (≤5 Fr). According to the American
College of Radiology and the European Society of Cardiology/European
Association for Cardio-Thoracic Surgery guidelines, intravenous volume
expansionwith isotonic fluids prior to CM administration could prevent
the risk of CIN (see below) (ACR Committee on Drugs and Contrast
Media, 2016; Authors/Task Force members, 2014) (Table 1).

2. Objective and methods of the review

The literature was screened up to November 2016 to select publica-
tions focusing on the topic “contrast-induced nephropathy” with due
emphasis given to relevant reviews summarizing developments during
the pastfive years. Medline, Science Citation Index, and the Cochrane Li-
brary were searched, using the following key words: N-acetylcysteine
(NAC); antioxidants; ascorbic acid; CM; fluid therapy; nephropathy; ni-
tric oxide; oxidative stress; ROS; and sildenafil citrate either in the title,
abstracts, or in the text. The relevance of the subject and eligibility of all
publications detected was further evaluated based on the title and ab-
stract. Data were then extracted from selected papers and discussed
among the authors. A final version of the manuscript was prepared
after several draft revisions and approved by all authors.

3. Terminology

CIN describes a sudden deterioration in kidney function occurring
within 48 h after intravascular administration of iodinated CM, which
is due to the CM. On the other hand, post-contrast acute kidney injury
(AKI) describes a sudden deterioration in kidney function occurring
within 48 h after intravascular administration of iodinated CM regard-
less of the cause (Baumgarten & Ellis, 2008; Davenport, Cohan,
Khalatbari, & Ellis, 2014; Davenport et al., 2013; Katzberg &
Newhouse, 2010; McDonald et al., 2013, 2014; Newhouse &
RoyChoudhury, 2013). Therefore, CIN is a causative diagnosis, while
post-contrast AKI is a correlative diagnosis and the two terms are neither
Table 1
Iodinated CM: an overview (ACR Committee on Drugs and Contrast Media, 2016; Solomon, 20

Generation Examples Osmolality Ionicity Iodine to
molecule
ratio

Administra

1st (first application
in the 1920s)

Diatrizoate
Iothalamate
Metrizoate

High Ionic
monomer

1.5:1 Oral
Intravenou
Urologic
Gastrointes

2nd (first
application in the
1960s)

Ioxaglate
Iohexol
Iopamidol
Iopromide
Iomeprol

Low Ionic
dimer
Nonionic
monomer

3:1 Intravenou
Intrathecal
Oral

3rd (first
application in the
2000s)

Iodixanol
Iotrolan

Iso Nonionic
dimer

6:1 Intravenou
synonymous nor interchangeable (ACR Committee on Drugs and
ContrastMedia, 2016). Consequently, CIN is a subgroup of post-contrast
AKI but few studies could allowdifferentiation thereofmainly due to the
control group selection (Baumgarten & Ellis, 2008; Davenport et al.,
2013, 2014; Katzberg & Newhouse, 2010; McDonald et al., 2013, 2014;
Newhouse & RoyChoudhury, 2013). As a result, the incidence of cases
reported in clinical studies and observed in clinical practice probably
combines CIN (i.e. AKI caused by CM administration) and other AKI
cases not caused by CM administration.

4. Incidence of CIN

CIN is generally considered a reversible form of acute renal failure
that begins soon after iodinated CMadministration during angiographic
or other procedures such as urography and it is recognized as an in-
crease of sCr level that generally appears in the first 48 h after exposure
to the CM and reaches a peak within the next 5 days (Wi et al., 2011).
CIN is associated with increased morbidity, hospital stay and mortality
(Golshahi et al., 2014; Rewa & Bagshaw, 2014). There are no standard
criteria for CIN or post-contrast AKI diagnosis; in the past sCr has been
widely used, either as 25% to 50% increase of the baseline sCr levels
and/or an absolute elevation of 0.5 to 2.0 mg/dL from baseline (ACR
Committee on Drugs and Contrast Media, 2016). However, sCr is not a
real-time biomarker of changing renal function. It rises slowly, relative
to the amount of filtration function lost in contrast-induced nephropa-
thy, delaying diagnosis by an average of 48–72 h. Changes in sCr con-
centration are not sensitive or specific for small alterations in GFR
(Sterling, Tehrani, & Rudnick, 2008). The decline in kidney function usu-
ally occurs 1 to 3 days after the procedure. Renal function usually
returns to pre-existing levels within 7 days (Barrett & Parfrey, 2006).

Early identification of patientswith AKI being at high risk for adverse
outcome can influence medical treatment. In general, CINmay be mon-
itored either by biomarkers representing changes in renal function (e.g.,
sCr or cystatin C and urine flow rate) or by those reflecting kidney dam-
age (e.g., Kidney injury molecule-1 (KIM-1), Neutrophil gelatinase-as-
sociated lipocalin (NGAL), interleukin-18, etc.). KIM-1 is a
transmembrane protein not expressed in normal kidney but upregulat-
ed in dedifferentiated proximal tubule cells after ischemic or nephro-
toxic AKI. Serum neutrophil gelatinase-associated lipocalin (NGAL), a
ubiquitous 25 kDa protein, covalently bound to gelatinase from
human neutrophils, is a marker of tubular injury (Briguori,
Quintavalle, Donnarumma, & Condorelli, 2014). KIM-1 may be used
14; Susantitaphong & Eiam-Ong, 2014).

tion Uses Clinical aspects of application

s

tinal

CT
X-ray
Fluoroscopy
Retrograde or
ascending
pyelography
Cystography

✓ Nonvascular procedures
✓ Not-widely used
✓ Patients' hydration highly recommended

s Angiocardiography
Arteriography of
cerebral arteries
CT of the head
Digital subtraction
angiography
Pyelography
Peripheral
angiography

✓ Indication for patients with renal insufficiency
compared to high-osmolar CM

✓ Heating to reduce viscosity
✓ Iohexol and ioxaglate show significantly higher

risk for CIN than other high-osmolar CM
✓ Hydration highly recommended

s Angiocardiography
Multi-detector
computed
tomography

✓ Indication for high risk patients
✓ Indication for patients with moderate-to-severe

kidney disease over low-osmolar CM
✓ Heating to reduce viscosity recommended
✓ Hydration highly recommended
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for early diagnosis and early initiation of treatment, as well as NGAL,
which starts to raise at 6 h after CM exposure (Akdeniz et al., 2015;
Briguori, Donnarumma, Quintavalle, Fiore, & Condorelli, 2015; Han,
Bailly, Abichandani, Thadhani, & Bonventre, 2002). In addition, urinary
KIM-1 can be useful for the prediction of renal injury, while urinary
NGAL has a good diagnostic performance in predicting mortality in pe-
diatric patients with CIN of heterogeneous etiology (Westhoff et al.,
2017). On the other hand, in a recent study KIM-1 and NGAL excretion
were unaffected by intravenous CM administration (Kooiman et al.,
2015). In conclusion, there are still open issues in the area of predicting
andmonitoring CIN, such as the optimum biological specimen collected
(urine versus blood), the sampling time, the cutoff value (or threshold)
of various novel markers and the clinical and prognostic significance of
this kidney injury biomarker in the setting of CIN.

Reported cases of post-contrast AKI vary considerably, as the numer-
ic criterion of sCr change varies, too. Furthermore, due to low sensitivi-
ty/specificity, sCr increase cannot differentiate CIN from generic post-
contrast AKI (ACR Committee on Drugs and Contrast Media, 2016), ei-
ther in cohort studieswith problematic control groups or during clinical
evaluations of individual patients (Davenport et al., 2013, 2014;
McDonald et al., 2013, 2014; Newhouse & RoyChoudhury, 2013). The
Acute Kidney Network consensus group addressed the variable defini-
tions of AKI attempting to standardize thediagnosis/staging irrespective
of etiology (Mehta et al., 2007). According to the criteria developed, AKI
is diagnosed if within 48 h after a nephrotoxic event (e.g., intravascular
iodinated CM exposure), one of the following is observed (Mehta et al.,
2007): i) absolute sCr increase ≥0.3mg/dL (N26.4 μmol/L); ii) % increase
in sCr ≥ 50% (≥1.5-fold above baseline); iii) urine output reduced to
≤0.5 mL/kg/h for at least 6 h.

The Acute Kidney Injury Network criteria can be used to define the
parameters of both post-contrast AKI and CIN. However, only recently
have they been employed scientifically in CIN investigation
(Baumgarten & Ellis, 2008; Chousterman et al., 2013; Davenport et al.,
2013; Endre & Pickering, 2010; Lakhal et al., 2011). The incidence and
clinical significance of CIN definitelywarrants further clarification by fu-
ture investigations based on recent methodological advancements
(Davenport et al., 2013; de Caestecker et al., 2015; McDonald et al.,
2013, 2014), because published studies to date have been severely af-
fected by bias and conflation (ACR Committee on Drugs and Contrast
Media, 2016).

5. Pathophysiology of CIN

The exact pathophysiology of CIN is obscure (ACR Committee on
Drugs and ContrastMedia, 2016) and several factorsmay be implicated,
including renal ischemia, particularly in the medulla, reactive oxygen
species (ROS) formation, reduction of nitric oxide production, and tubu-
lar epithelial and vascular endothelial injury (Andreucci, Faga, Pisani,
Sabbatini, & Michael, 2014; Scoditti, Massaro, & Montinari, 2013) (Fig.
2). Iodinated CM may exert their nephrotoxic effects in several ways.
Hemodynamic alterations resulting in renal medullary hypoxia and di-
rect toxicity on renal tubular epithelial cells seem to be major factors
contributing to CIN (Caiazza et al., 2014). All types of CM exert cytotoxic
effects in vitro and renal tubular epithelial cells present signs of severe
cell damage or apoptosis when exposed to CM (Romano et al., 2008;
Seeliger, Sendeski, Rihal, & Persson, 2012). CM induce renal vasocon-
striction, through increase of adenosine and endothelin, and deflect
blood flow from the medulla to the cortex. Consequently, renal blood
flow to the medulla and GFR are reduced, followed by renal medullary
ischemia (Persson, Hansell, & Liss, 2005).

Reduction in renal blood flow can also activate ROS release through
oxidative stress andosmotic necrosis or vacuolization causeddirectly by
the CM in tubular cells, leading to acute tubular necrosis (Keaney,
Hannon, & Murray, 2013; Tumlin et al., 2006). ROS constrict renal mi-
crocirculation and indirectly affect renal vascular tone by mediating
the effects of other vasoconstrictors, stimulating the production of
vasoconstrictors and modulating the actions of vasodilators, such as ni-
tric oxide (Briguori, Quintavalle, De Micco, & Condorelli, 2011). Mito-
chondrial dysfunction as a result of direct tubular toxicity, in
combinationwith ROS generation, damages glomerular cells by increas-
ing the membrane permeability leading to apoptosis (Goldenberg &
Matetzky, 2005; Romano et al., 2008). Apoptosis, after CM administra-
tion, can also be caused by activation of stress kinases and by the intrin-
sic apoptosis pathway (Ramponi, Grotti, Morisetti, Vultaggio, & Lorusso,
2007).

More specifically, renal hypoxia in the setting of CM administration
is considered a crucial factor in the generation of ROS in the kidney
(Pisani et al., 2013). However, there are conflicting reports whether ox-
idative stress is a result of CM renal injury or actually contributes to ne-
phropathy development. Advocates of ROS causal implication in the
pathophysiology of CIN consider that CM administration is responsible
for toxic renal parenchymal injury, which is presumably mediated by
ROS. Current research is focused on delineating ROS involvement in
the pathophysiology of CIN and the potential intervention in ameliorat-
ing it. Table 2 presents a summary of recent experimental studies on ox-
idative stress related to CIN in animal models (Table 2a) and humans
(Table 2b).

ROS, such as superoxide (O2
−), hydrogen peroxide (H2O2) and hy-

droxyl radical (OH−), are actively involved in inflammatory responses.
ROS are generated during renal parenchymal hypoxia induced by CM
causing direct tubular and vascular endothelial injury. This in turn can
aggravate renal parenchymal hypoxia augmenting endothelial dysfunc-
tion and dysregulation of tubular transport (Pisani et al., 2013). Free ox-
ygen radicals lead to the accumulation of peroxynitrite, which is
oxidative and a very reactive nitrosative species capable of further re-
ducing the bioavailability of nitric oxide. The adverse effect occurs
through the nitrosation of tyrosine residues of enzymes, such as
prostacycline synthase and nitric oxide synthase, which are involved
in the synthesis of medullary vasodilators. As a result, greater vasocon-
striction and increased tissue damage can occur (Detrenis, Meschi,
Musini, & Savazzi, 2005).

On the other hand, ROS activate c-JunN-terminal kinases (JNKs) and
p38MAPK stress kinases, which contribute to the activation of caspase-
9 and caspase-3 (Briguori et al., 2015). The induction of apoptosis is as-
sociatedwith the activation of aspartate-specific cysteine proteases. Mi-
tochondria play a role in some forms of apoptosis by releasing
cytochrome c and activating caspase-9, which activates caspase-3. Cas-
pase-3, as a common component of apoptotic signaling, mediates both
mitochondria-dependent and death receptor-dependent apoptosis
pathways (Rezaee et al., 2016).

The ability to accommodate oxidative injury decreases with age and
is thought to contribute to the increased risk of CIN among older pa-
tients, while increased oxidative stress is also present in chronic renal
failure and in diabetes, known risk factors for CIN (Tumlin et al.,
2006), as discussed later. The renal medulla has a unique circulatory
anatomy (Liu, Schmerbach, et al., 2014), which causes medullary thick
ascending limbs of the loop of Henle to perform energetically demand-
ing ion transport in a situation of relative hypoxia compared with the
renal cortex. It is thought that a mismatch between the metabolic de-
mands of thick ascending limbs of the loop of Henle and the medullary
blood supply could cause a surplus of superoxide (O2

−), leading to oxida-
tive tubular damage superimposed on ischemic damage (Liu,
Schmerbach, et al., 2014). Tubular transport is associated with ROS for-
mation,mostly in the renal medullary thick ascending limb. The region-
al extremely dense mitochondrial population there represents a major
source for generation of superoxide anions (O2

−) and hydroxyl radicals
(OH−) by NAD(P)H-oxidase [nicotinamide adenine dinucleotide (phos-
phate) oxidase] (Pisani et al., 2013).

Oxidative DNA damage in renal tubular cells due to CM administra-
tion can lead to necrosis or apoptosis of these cells. DNA damage causes
release of the p53 protein complex that, apart from its anticancer func-
tion, plays a role in apoptosis, genomic stability, and inhibition of



Fig. 2. Pathophysiology of CIN. Several factors, such as renal ischemia, particularly in the medulla, ROS formation, reduction of nitric oxide production, tubular epithelial and vascular
endothelial injury are interconnected. CM: contrast media, CKD: chronic kidney disease, RBF: renal blood flow, GFR: glomerular filtration rate, Scr: serum creatinine, SUrea: serum
urea, ROS: reactive oxygen species. Antioxidants*: sodium bicarbonate, NAC, ascorbic acid, statins, phosphodiesterase type 5 inhibitors.
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angiogenesis. In cases where genotoxic stress is found, p53 induces the
expression of BIK (BCL2 Interacting Killer), a pro-apoptotic BH3-only
member of the BCL-2 protein family. BIK is highly involved in the intrin-
sic apoptotic pathway leading ultimately to mitochondrial membrane
dysfunction, mitochondrial fragmentation and release of cytochrome c
(Mathai, Germain, & Shore, 2005). Recently in AKI animal models, p53
overexpression was noted and an equivocal role of the said molecule
in renal cell apoptosis or autophagy was suggested (Ishihara et al.,
2013). On the other hand, a direct toxic effect of CM to tubular cells
leads to endoplasmic reticulum stress, which can cause cytosolic Ca2+

accumulation and calpain-1 and -2 activation leading to either activa-
tion of caspases or lysosome rupture, cathepsin release or PARP-1 cleav-
age and ultimately new DNA damage (Naziroglu, Yoldas, Uzgur, &
Kayan, 2013). In the said context, calpain activation was found to pro-
mote glomerulonephritis (Peltier et al., 2006) while administration of
calpain inhibitor-1 reduced renal insults in a rat model of renal ische-
mia/reperfusion injury (Chatterjee et al., 2001).

A novel and interesting pathway of antioxidant defense in CIN that
was recently investigated involves the transcription factor nuclear fac-
tor erythroid 2-related factor 2 (Nrf2). Nrf2, when translocated into
the nucleus, stimulates transcription of genes that encode detoxifying
and antioxidant enzymes, such as NADPH-quinone oxidoreductase 1
(NQO1) and GSH (glutathione) and peroxiredoxin I. All these enzymes
contribute to cellular protection by removing superoxide anions, hydro-
gen peroxide and hydroxyl radicals (Saito, 2013). In this framework,
sulforaphane, which is a widely used Nrf2 activator, was tested recently
in CIN protection. Pre-treatment with sulforaphane attenuated renal
damage and improved sCr concentration in an animal model of CIN
(Zhao et al., 2016).

6. Risk factors of CIN

Multiple risk factors for CIN have been proposed, including among
others diabetes mellitus; dehydration; cardiovascular disease; diuretic
use; multiple myeloma; hypertension; hyperuricemia; and multiple io-
dinated CMdoseswithin a short time (b24 h); female gender; advanced
age; the amount and type of the contrast medium as well as the type of
the intervention for which CM is used (Abujudeh, Gee, & Kaewlai, 2009;
ACR Committee on Drugs and Contrast Media, 2016; Davenport et al.,
2013; Heyman, Rosenberger, Rosen, & Khamaisi, 2013; Katsiki, Athyros,
Karagiannis, & Mikhailidis, 2015; Russo, Aurelio, & Durante, 2014;
Stacul et al., 2011; Trivedi & Foley, 2010; Weisbord & Palevsky, 2015).



Table 2a
Recent experimental studies on oxidative stress markers related to CIN in animal models.

Animals Study design Main findings related to ROS Kidney function

Wistar albino rats;
Ari et al. (2012)

Contrast-induced nephropathy (CIN) by
indomethacin, Nw-nitro-L-arginine methyl ester
(L-NAME) and meglumineamidotrizoate
paracalcitol in controls

Paracalcitol + CIN group: lower serum
malondialdehyde and lower kidney
thiobarbituric acid-reacting substances

Paracalcitol + CIN group: lower mean serum
creatinine (sCr) levels

Male
Sprague-Dawley
rats; Tasanarong,
Kongkham, et al.
(2014)

CIN induced by indomethacin, L-NAME and
lopromide. Phyllanthusemblica in CIN group and
controls

Malondialdehyde (MDA) increase; decrease in
total antioxidant capacity (TAC), superoxide
dismutase (SOD) and catalase (CAT) activity in
CIN group compared to controls. Rats treated
with phyllanthusemblica showed lower MDA,
higher TAC, SOD and CAT compared to CIN group

Phyllanthusemblica significantly preserved renal
function/attenuated histological damage
severity

Uni-nephrectomized
rats; Pisani et al.
(2014)

Recombinant manganese SOD in CIN group
induced by indomethacin/diatrizoate

ROS doubled in CIN group compared to controls;
normalized in recombinant manganese SOD
group, significant SOD activity increase observed

Significant fall in glomerular filtration rate (GFR)
— lower presence of tubular
necrosis/intratubular casts in recombinant
manganese SOD-treated rats

Male rats; Baykara
et al. (2015)

CIN induced by diatrizoate; pretreatment with
propolis, N-acetylcysteine (NAC) and calpain

Diatrizoate decreased glutatheone, SOD,
glutathione peroxidase, and CAT levels;
normalization by pretreatment with propolis,
NAC, calpain

Diatrizoate increased sCr, blood urea nitrogen
(BUN) levels; propolis, NAC, calpain normalized
sCr levels

Male
Sprague-Dawley
rats; Wang et al.
(2014)

CIN induced by indomethacin, L-NAME and
ioversol. Subcutaneous injection of Magnolin

Elevated MDA/decreased SOD in CIN group
compared to control. Pretreatment with
Magnolin reduced MDA/increased SOD levels

Magnolin ameliorated tubular necrosis,
apoptosis and deterioration of renal function

Sprague-Dawley
rats; Zhao et al.
(2015)

CIN induced by indomethacin, L-NAME and
ioversol. Pretreatment with recombinant
renalase

Pretreatment with recombinant renalase
decreased renal MDA levels and increased renal
SOD levels

Increases in sCr and BUN were by recombinant
renalase

Wistar rats; Wang,
Wei, et al. (2015)

CIN induced by indomethacin, L-NAME and
lopromide. Probucol or NAC in CIN groups.

MDA level increased and SOD level decreased,
significantly in the CIN group. Probucol and NAC:
significantly milder changes in the above indices

Probucol and NAC groups: significantly lower
sCr, BUN and urine protein levels compared to
CIN group

Male Swiss mice;
Boa et al. (2015)

CIN induced by indomethacin, L-NAME and
ioversol. Pretreatment with resin from
Virolaoleifera or NAC

Marked increase in ROS production in the CIN
group, compared with control. Highest dose of
resin restored ROS in the medulla as effective as
NAC.

Resin treatment had beneficial effects on renal
histopathology superior NAC

Female Wistar
albino rats; Ozbek
et al. (2015)

CIN induced by meglumine/sodium diatrizoate.
Tadalafil post CM

MDA levels significantly higher in CIN group
compared to controls and tadalafil group

Serum cystatin C, sCr and BUN significantly
lower in tadalafil group

Male Wistar rats; de
Almeida et al.
(2016)

CIN induced by water deprivation, L-NAME
intraperitoneally and intravenous iohexol.
Sildenafil pretreatment in CIN groups

Sildenafil attenuated the increase in H2O2 and
ONOO−/OH– bioavailability without modifying
the amount of O2– and nitric oxide

Sildenafil attenuated marked reduction of GFR
and renal blood flow in CIN group

Sprague-Dawley
rats, Zhao et al.
(2016)

CIN induced by indomethacin, L-NAME and
Ioversol. Sulforaphane in CIN group.

MDA in Ioversol group was significantly higher
than controls. Sulforaphane significantly
attenuated MDA levels increase; MDA levels did
not significantly differ between control and
Ioversol + sulforaphane groups

sCr and BUN decreased in the Ioversol +
sulforaphane group compared to the Ioversol
group

Female
Wistar-albino
rats; Cetin et al.
(2008)

CIN induced by sodium ioxithalamate +
meglumineioxithalamate. Cisplatin and ascorbic
acid in CIN groups

MDA increased significantly in CIN groups
compared to controls. Ascorbic acid prevented
the increase

CM+ cisplatin caused increases in sCr creatinine
and BUN. Significant reduction of tubular
damage in rats treated with ascorbic acid

Male
Sprague-Dawley
rats; Colbay et al.
(2010)

CIN induced by diatrizoate. Caffeic acid phenethyl
ester and NAC in CIN groups

MDA levels of caffeic acid phenethyl ester and
NAC groups were lower than CIN group. SOD and
glutathione peroxidase activities were
significantly lower in CIN group compared with
other groups. CAT in the caffeic acid phenethyl
ester CAPE group were significantly lower than
NAC group

Renal injury scores higher in caffeic acid
phenethyl ester and NAC groups than in control
but lower than the CIN group. SCr levels in caffeic
acid phenethyl ester and NAC groups were
significantly lower than CIN group

Male Wistar rats;
Kurtoglu et al.
(2015)

CIN induced by water deprivation + diatrizoate.
Ozone (O3), or oxygen (O2) pretreatment in CIN
groups

No significant differences in MDA levels between
the CIN and O2 groups. MDA levels in CIN and O2

groups were significantly increased compared
with O3 group

Prominent tubular necrosis in CIN group. sCr,
BUN, tubular necrosis decreased in O3 compared
to CIN group

Male Wistar rats;
Boyacioglu et al.
(2014)

CIN induced by water deprivation and iohexol
Pretreatment with L-carnitine

MDA levels increased in CIN group. Compared
with CIN group, glutatheone levels were
significantly higher in CIN + L-carnitine group.
Compared with CIN group, SOD activities of the
control and CIN + L-carnitine groups increased
insignificantly.

Histopathological findings showed that

L-carnitine may have a preventative effect in
alleviating the negative effects of CIN

Sprague-Dawley
rats; Hsu, Li, Chu,
Periasamy, & Liu
(2011)

CIN induced by iothalamatemeglumine.
Pretreatment with sesame oil and gentamicin s.c.
for 5 days

Sesame oil significantly inhibited renal lipid
peroxidation induced by the contrast and
gentamicin combination. MPO level in contrast +
gentamicin group was significantly higher than
other groups

Sesame oil significantly prevented the rise of
BUN and sCr levels

Wistar rats (normal
and diabetic); Lee,
Yen, & Sheu
(2006)

CIN induced by ionic high-osmolardiatrizoate,
ionic low osmolarioxaglate and non-ionic low
osmolariopromide. Evaluation of glutathione
peroxidase and SOD activity in heart and kidney
tissue

Renal glutathione peroxidase activity
significantly decreased in both normal and
diabetic rats at 1 h after diatrizoate injection
while renal SOD activities were not affected.
Ioxaglate and iopromide injection did not cause
any change in renal antioxidant enzyme activity
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Table 2b
Recent experimental studies on oxidative stress markers related to CIN in humans.

Humans Study design Main findings related to ROS Kidney function

289 consecutive patients with
ST-segment elevation myocardial
infarction undergoing primary
percutaneous coronary
intervention; Borekci et al. (2015)

Observational study for the relation of
paraoxonase-1 activity and oxidative stress
markers with contrast-induced
nephropathy (CIN)

Paraoxonase-1 and total antioxidant status
was significantly lower and oxidative stress
index and total oxidant status
concentrations were significantly higher in
patients with CIN compared to the
non-contrast-induced group

Paraoxonase-1 activity, oxidative stress
index, contrast medium amount and
diabetes were independent predictors for
CIN in patients with anterior ST-segment
elevation myocardial infarction

36 consecutive patients who
underwent coronary angiography;
Tajiri et al. (2011)

Observational study. Urinary
F2-isoprostane, a marker of oxidative stress,
measured at baseline and 24 h after
angiography and serum creatinine (sCr)
was measured at baseline, 24 h and after 1
year

In multivariate analysis, significant
correlation found between the increase in
urinary F2-isoprostane at 24 h and the
decrease in estimated glomerular filtration
rate (GFR) at 1 year

The decrease in estimated GFR at 1 year
after coronary angiography correlated
with the decrease in estimated GFR at 24 h
after angiography

21 patients with reduced renal
function who underwent coronary
angiography; Saitoh et al. (2011)

Equally assigned to control,
N-acetylcysteine (NAC) and glutathione

In controls, urinary lipid hydroperoxides
increased to 299% of the baseline at 2 h after
angiography. The increase in the urinary
lipid hydroperoxides was abolished in the
glutathione group, but not in the NAC
group. In controls, serum glutathione level
fell significantly 2 h after coronary
angiography. The decrease was prevented
in glutathione but not in NAC group

In the glutathione group, sCr level
decreased significantly at 24 h after
glutathione and returned to baseline level
at 48 h, whereas it did not change in
control or in NAC group

825 patients who underwent
selective coronary angiography
and/or intervention Wang, Wang,
et al. (2015)

Randomized, placebo-controlled trial of
reduced glutathione 1800 mg for the
prevention of CIN

Change in serum malondialdehyde was not
significant in the glutathione and in control
group, change in serum total antioxidant
capacity level was also similar in both
groups

Incidence of contrast-induced AKI was
5.07% in the glutathione group and 4.97%
in the control group (relative risk, 1.04)
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However, not all of them have been rigorously confirmed (ACR
Committee on Drugs and Contrast Media, 2016) and may act as con-
founders. On the other hand, there is a general agreement that the most
important risk factor for CIN is pre-existing severe renal insufficiency
(Davenport et al., 2013; Stacul et al., 2011).

CIN may occur in children but rarely (Ajami et al., 2010;
Senthilnathan, Gauvreau, Marshall, Lock, & Bergersen, 2009). On the
other hand, advanced age (N65 years) has been reported to be associat-
edwith a greater risk of CIN (Nicola et al., 2015). Nevertheless, there has
been a discussion onwhether age is a true risk factor because elderly in-
dividuals very often have an impaired renal function and other co-mor-
bidities (Stacul et al., 2011).

The amount and type of CM used during coronary angiography or
percutaneous coronary intervention has also been reported to affect
the incidence of CIN. The nephrotoxic effect of iodinated CM may be
proportional to dose for cardiac angiography; there is no evidence of a
dose-toxicity relationship following intravenous administration when
administered at usual diagnostic doses (ACR Committee on Drugs and
Contrast Media, 2016). Administration of higher CM volumes is associ-
ated with increased CIN rate andmortality but in the absence of chronic
kidney disease and diabetes mellitus, the incidence of CIN remains low
(Aguiar-Souto et al., 2010; Kahn et al., 1990; Kane et al., 2008). The
physicochemical properties of the CM (mainly osmolality and viscosity)
have been reported to play a major role in their renal toxicity, as
discussed above. Lowering the osmolality of the CM reduces the inci-
dence of CIN. However, the issue of the “ideal CM” remains controver-
sial, because the lower the osmolality of CM, the higher the viscosity
(viscosity increases when shifting from high- to low- and isoosmolar
CM (Azzalini, Spagnoli, & Ly, 2016; Seeliger et al., 2012). Administering
a CM with high viscosity results in an increase of the viscosity of the
renal ultra-filtrate and, therefore, to a parallel increased resistance to
renal tubular flow, ultimately leading to tubular damage (Persson et
al., 2005). Gadolinium-based CM either do not cause CIN, or exception-
ally rarely, unless administered at (not recommended) extreme above-
FDA-label doses to achieve X-ray attenuating effects during angiogra-
phy (ACR Committee on Drugs and Contrast Media, 2016). In this
case, gadolinium-based CM are more nephrotoxic than isoattenuating
doses of iodinated CM (Briguori et al., 2006; Elmstahl et al., 2004;
Erley et al., 2004).
Recently, literature on CINhas been dominated by reports on cardiac
angiography with iodinated CM. However, in cardiac angiography the
injection is intra-arterial and supra-renal; it requires a catheter that
can dislodge atheroemboli and the CM dose to the kidneys is more
abrupt and concentrated (Davenport et al., 2014; Karlsberg et al.,
2011; Katzberg & Newhouse, 2010; Nyman, Almen, Jacobsson, &
Aspelin, 2012) compared to interventions using intravenous CM.
Inasmuch as the route of CM administration has been reported as a
risk factor (intra-arterial compared to intravenous administration gen-
erally is associated with a higher risk of CIN) (Dong et al., 2012), the
overall incidence of post-contrast AKI in studies of cardiac angiography
is higher than it is in studies of intravenous iodinated CM administra-
tion. Consequently, data from cardiac angiography studies likely over-
estimate the risk of CIN for patients undergoing intravenous contrast-
enhanced studies (Davenport et al., 2014; Katzberg &Newhouse, 2010).

Patientswith chronic kidney disease are at increased risk of CIN, pre-
sumably because of reduced adaptive capacity but possibly also because
of increased cellular exposure. If the same amount of CM is filtered by
fewer nephrons, the exposure of the individual nephron will obviously
increase proportionately (Hogstrom & Ikei, 2015; Stacul et al., 2011).
The incidence of CIN in patients with pre-existing chronic kidney dis-
ease who underwent standard percutaneous coronary interventions
has been reported as high as 55% (Rihal et al., 2002). It has also been
shown that even though CM administration does not always cause
CIN in cases with pre-existing renal insufficiency, major complications
(death or renal failure requiring dialysis) occurred more frequently at
long-term follow-up in patients with CM exposure than in those with
no exposure (Abaci et al., 2015).

According to the American College of Radiology guidelines (ACR
Committee on Drugs and Contrast Media, 2016) risk factors that may
warrant renal function assessment prior to the administration of intra-
vascular iodinated CM include: 1) age N 60 years; 2) history of renal dis-
ease (dialysis; kidney transplant; single kidney; renal cancer; renal
surgery); 3) history of hypertension requiring medical therapy; 4) his-
tory of diabetes mellitus; and 5) metformin or metformin-containing
drug combinations (metformin does not confer an increased risk of
CIN but patients on metformin who develop AKI may be susceptible to
lactic acidosis development). Patients without one of the above risk fac-
tors do not require a baseline sCr determination before iodinated CM



106 C. Mamoulakis et al. / Pharmacology & Therapeutics 180 (2017) 99–112
administration for a routine intravascular study. Recognition of these
major risk factors facilitates identification of patients at increased risk
for CIN and helps research efforts to evaluate the effectiveness of poten-
tial prevention strategies.

7. Prevention strategies for CIN

All patients receiving CM should be evaluated for the risk of CIN and
high-risk patients should be considered for prevention strategies sup-
ported by clinical evidence. Because CIN is a potentially preventable
clinical condition, an increased knowledge of CIN should increase the
likelihood of reducing the risk of its occurrence. In patients without
risk factors, the incidence of CIN appears to be minor (b1%) but in
high-risk patients the incidence seems to be high (up to 15%) (Rancic,
2016).

7.1. Fluid therapy (volume expansion)

Hydration induces an increase of urine flow rate, reduces the con-
centration of CM in the tubule and expedites their excretion, thus reduc-
ing their bioavailability in the tubular cells. In that sense, time-
dependent toxic effects are minimized (Ellis & Cohan, 2009). Hydration
decreases the activity of the renin-angiotensin system causing a reduc-
tion in vasoconstrictive hormones, such as endothelin. Sodium diuresis
is increased, while decreased tubulo-glomerular feedback further pre-
vents tubular obstruction (Sterling et al., 2008). Diuresis also leads to
vasodilation in the vulnerable region of the renal medulla possibly
through an increase in the production of prostacyclin (Ellis & Cohan,
2009).

The use of hydration is widely accepted, because of its low cost and
risk. Hydration (intravenous volume expansion) prior to the adminis-
tration of CM is the intervention proven most effective in reducing CIN
risk. It has become routine and is the standard against which all other
potential preventive manoeuvres are compared regarding efficacy for
CIN prevention in patients at risk (ACR Committee on Drugs and
Contrast Media, 2016).

Isotonic sodium chloride (or isotonic sodium bicarbonate; see
below) solution is the best option for preventing CIN. The reasons are
not well established but the mechanism is likely related primarily to
the increased tubular flow rates produced by volume expansion and,
therefore, a decreased concentration of the filtered CM during transit
through the kidney tubules and a slight increase in tubular pH resulting
from a fixed acid excretion in an increased tubular volume produced by
the increased tubular flow rates (Tasanarong, Burgess, et al., 2014).

For intravenous hydration, isotonic saline has been reported to be
more effective than half-isotonic saline (saline-glucose) (Ellis & Cohan,
2009; Pattharanitima & Tasanarong, 2014). Fluid administration intra-
venously within 12 h before and 12 h after CM administration is superi-
or to bolus administration at the time of injection (Ludwig & Keller,
2014). According to the American College of Radiology guidelines
(ACR Committee on Drugs and ContrastMedia, 2016), the ideal infusion
rate-volume is not known, but isotonic fluids are preferred (Lactated
Ringer's or 0.9% NaCl). One possible protocol would be 0.9% NaCl at
100 mL/h, beginning 6–12 h before and continuing 4–12 h after, but
this is only practical in the inpatient setting (ACR Committee on Drugs
and Contrast Media, 2016). The European Society of Urogenital Radiol-
ogy guidelines recommends an intravenous regime of 1.0–1.5 mL/kg/h
for at least 6 h before and after contrast medium administration
(Stacul et al., 2011). According to the European Society of Cardiology/
European Association for Cardio-Thoracic Surgery guidelines, all pa-
tients with chronic kidney disease (especially if estimated GFR is b40
mL/min/1.73 m2), who undergo diagnostic catheterization should re-
ceive preventive hydration with isotonic saline, starting around 12 h
prior to angiography and continuing for at least 24 h afterwards to re-
duce the risk of CIN (Authors/Task Force members, 2014).
Apart from intravenous administration, hydration may be given
orally. There has not been adequate research on this topic and results
are conflicting (Stacul et al., 2011). A small recent meta-analysis of six
randomized controlled trials concluded that the oral routemay be as ef-
fective as the intravenous route for volume expansion for CIN preven-
tion. However, the authors acknowledged that adequately powered
trials with hard endpoints should be performed (Hiremath, Akbari,
Shabana, Fergusson, & Knoll, 2013). Based on the overall current avail-
able evidence, oral hydration is considered less effective (ACR
Committee on Drugs and Contrast Media, 2016).

Hydration is sometimes used in combination with several com-
pounds such as diuretics (mannitol or furosemide) or agents with anti-
oxidant properties (see below). An exacerbation of renal dysfunction is
seenwhen furosemide is used in addition to intravenous saline solution
(Kwok, Pang, Yeong, & Loke, 2013). Neither mannitol nor furosemide is
recommended for CIN risk reduction (ACR Committee on Drugs and
Contrast Media, 2016). However, according to the European Society of
Cardiology/European Association for Cardio-Thoracic Surgery guide-
lines (Authors/Task Force members, 2014), furosemide with matched
hydration may be considered over standard hydration in those at very
high risk for CIN or in cases where prophylactic hydration before the
procedure cannot be accomplished. The recommended protocol is ini-
tial 250 mL intravenous bolus of normal saline over 30 min (reduced
to 150 mL in case of left ventricle dysfunction) followed by an intrave-
nous bolus (0.25–0.5 mg/kg) of furosemide. When the urine output
rate is N300 mL/h, patients undergo the coronary procedure. Matched
fluid replacement is maintained during the procedure and for 4 h
post-treatment.

A recent meta-analysis of randomized controlled trials evaluating
the comparative effectiveness of interventions (administration of NAC,
sodium bicarbonate, statins, or vitamin C (ascorbic acid)) that used in-
travenous or intra-arterial CM to reduce CIN in adults concluded that
the greatest reduction in CIN rate was seen with intravenous saline
plus NAC in patients receiving low-osmolar CM and with intravenous
saline plusNAC plus statins (Subramaniam, Suarez-Cuervo, et al., 2016).

7.2. Antioxidants

As previously discussed, CM administration can cause an increase of
ROS production in vasa recta and tubule cells and consequently induces
apoptosis activation. Several compounds with antioxidant properties
have been investigated including volume expansion using sodium
bicarbonate, as well as pharmacological agents including NAC, ascor-
bic acid, statins, and recently, phosphodiesterase type 5 inhibitors
(Table 3).

7.2.1. Sodium bicarbonate
It has been proposed as an effectivemethodof hydration,mainly due

to its alkalinizing properties (Ellis & Cohan, 2009; Tasanarong, Burgess,
et al., 2014). A reduction in oxidative stress in renal tubular cells may be
the keymechanism of sodium bicarbonate nephroprotection. Bicarbon-
ate is able to decelerate the Haber–Weiss reaction that generates free
radicals. Bicarbonate may also directly scavenge peroxynitrite generat-
ed from nitric oxide. Urinary alkalinization and intra-tubular pH in-
crease, as a direct effect of intravenous sodium bicarbonate
administration, may reduce the pH-dependent generation of methemo-
globin (Fe3+) in the tubular casts, the production of free radicals
catalysed by ferrous-ion, as well as proteinuria-induced oxidative dam-
age. Thus, attenuation of oxidative stress through urine alkalinization
with sodium bicarbonate may attenuate CIN. The mechanism of action
of sodium bicarbonate has mainly been deduced from animal studies
but there are also data on its effectiveness in humans (Pavlidis, Jones,
Sirker, Mathur, & Smith, 2015; Schiffl, 2015).

Despite a large number of clinical trials and meta-analyses conduct-
ed so far, the most effective type of intravenous volume expansion (iso-
tonic sodium bicarbonate versus sodium chloride) and the benefit of



Table 3
Summary of the most common anti-oxidants studied for protection against contrast-induced nephropathy.

Anti-oxidant Mode of action Contraindications/side effects Administration
route

Sodium bicarbonate Attenuation of oxidative stress through urine alkalization Patients with
moderate-to-severe chronic
kidney disease

Intravenous

N-acetylcysteine Scavenger of free radicals, vasodilation, precursor for glutathione synthesis, inhibit
angiotensin-converting enzyme

Anaphylactoid reactions Oral
recommended

Ascorbic acid Scavenger of oxygen free radicals None reported Oral
Statins Pleiotropic action, improving endothelial function, maintaining nitric oxide

production and reducing free radicals formation through NADPH oxidase activity
No contraindications Oral

Phosphodiesterase 5 inhibitors
(treatment of erectile
dysfunction)

Enhancing the vasodilatory effect of released nitric oxide, selective inhibition of cyclic
guanosine monophosphate (cGMP)-specific phosphodiesterase type 5

Various reported Oral
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NAC (see below; NAC) to prevent CIN is still unclear. Careful review of
published trials reveals several methodological limitations contributing
to their inconclusive findings. A carefully designed large multicentre
double-blind randomized controlled trial (PRESERVE trial) is currently
underway with the ambition to definitively answer these questions re-
garding the prevention of serious adverse outcomes associatedwith CIN
in high-risk patients undergoing coronary or non-coronary angiography
(Weisbord et al., 2013).

Some meta-analyses to date have shown intravenous volume ex-
pansion with sodium bicarbonate to be superior to normal saline
(Jang et al., 2012; Merten et al., 2004; Navaneethan, Singh, Appasamy,
Wing, & Sehgal, 2009), but these results have been challenged by
other meta-analyses (Subramaniam, Wilson, et al., 2016; Zoungas et
al., 2009) and cannot be considered definitive at this time. Intravenous
sodium bicarbonate given 1 h before exposure to CM has been reported
more effective in preventing CIN than isotonic saline and oral NAC given
post-procedural (Kagan & Sheikh-Hamad, 2010). Furthermore, it has
been reported that sodium bicarbonate is superior to saline for the pre-
vention of CIN in patients with pre-existing renal insufficiency (Zhang,
Liang, Chen, Liang, & Zhang, 2015), however this notion remains contro-
versial (Caixeta & Mehran, 2010; Ellis & Cohan, 2009). Finally, the inci-
dence of CIN has been reported to be significantly lower in sodium
bicarbonate hydration with NAC compared to saline hydration with
NAC and saline hydration with ascorbic acid plus NAC (Andreucci,
Faga, Pisani, Sabbatini, Russo, et al., 2014; Pattharanitima &
Tasanarong, 2014).

The European Society of Urogenital Radiology guidelines states that
hydration with either isotonic saline or sodium bicarbonate (3mL/kg/h
for 1 h before contrast medium followed by 1 mL/kg/h for 6 h after) re-
duces the incidence of CIN (Stacul et al., 2011). However, according to
the European Society of Cardiology/European Association for Cardio-
Thoracic Surgery guidelines for patients with moderate-to-severe
chronic kidney disease undergoing coronary angiography or multi-de-
tector computed tomography, infusion of 0.84% sodium bicarbonate in-
stead of standard hydration is not indicated (Authors/Task Force
members, 2014).

7.2.2. NAC
NAC is an acetylated derivative of the amino acid cysteine. The po-

tential of NAC as a protective agent of the kidney is promising because
NAC carries both antioxidant and vasodilating properties as shown in
animal studies and, therefore, it has been investigated as a preventive
agent of CIN in humans (Fishbane, 2008; Hosseinjani, Moghaddas, &
Khalili, 2013). It exerts significant protective/ameliorative effects
against drug-induced renal injury in experimental models, attributed
to several mechanisms in different experimental settings, including an-
tioxidant action by restoring the reduced intracellular pool of the natu-
ral antioxidant glutathione; direct free radical scavenging; and/or
interaction with ROS; as well as prevention of contrast-induced renal
cell apoptosis (Briguori et al., 2011; Hosseinjani et al., 2013). Apart
from the antioxidant properties, NAC exhibits other biological actions
that might be relevant in CIN prevention. It may have vasodilatory ef-
fects in certain situations, by stabilizing nitric oxide (Fishbane, 2008)
or even by increasing nitric oxide production after the administration
of CM (Briguori et al., 2011). In addition, the sulfhydryl group of NAC
may inhibit angiotensin-converting enzyme, resulting in reduction of
angiotensin II production (Fishbane, 2008).

NAC is available in oral and intravenous formulations, although bio-
availability is very low. Following oral administration, bioavailability is
reported to be b5%, probably due to extensive first-pass hepatic metab-
olism (only the oxidized form (no free drug) is detectable in very small
quantities in the circulation); following intravenous administration, the
drug is found highly bound to plasma/tissue proteins, forming various
disulphide compoundswith small amounts only detected in the circula-
tion (Fishbane, 2008).

Due to the pharmacological properties of NAC, especially its poor
bioavailability, the in vivo effects must be considered separately from
its in vitro actions. The antioxidant effects of NAC may be indirect in
humans (restoring via glutathione synthesis induction the reduced
pool of intracellular glutathione that possesses a key role in the bodyde-
fense against cellular oxidative damage; Rushworth & Megson, 2014).
Circulating cysteinemay enter renal cells serving as a precursor for glu-
tathione production.

NAC has been widely used (mainly at a standard dose of 600 mg
orally twice daily for 24 h the day before and on the day of the proce-
dure; Stacul et al., 2011) for the prevention of CIN in populations at
risk, following the publication of a milestone randomized placebo con-
trolled trial (Tepel et al., 2000). The trial concluded that NAC (at
600 mg orally twice daily, prior to and after contrast administration),
along with hydration (0.45% saline intravenously), prevents renal func-
tion reduction induced by non-ionic, low-osmolality contrast agents in
patients with chronic renal insufficiency (Tepel et al., 2000). Subse-
quently, NAC has been studied at higher doses orally (1200 mg twice
daily for 48 h) and intravenously (total dose ranging from 2400 mg to
150 mg/kg), but there have been widely conflicting results in a large
number of clinical trials and meta-analyses and its efficacy to reduce
CIN incidence remains controversial mainly due tomethodological lim-
itations contributing to the inconclusive findings (Owen, Hiremath,
Myers, Fraser-Hill, & Barrett, 2014; Weisbord et al., 2013). A carefully
designed multicentre double-blind randomized controlled trial (PRE-
SERVE trial) is underway with the ambition to definitively answer
this question among others (see above; sodium bicarbonate) in high-
risk patients undergoing coronary or non-coronary angiography
(Weisbord et al., 2013).

There have also been doubts about a potential artifactual effect on
sCr concentration that may be responsible for the positive results seen
because NAC reduces sCr concentration in normal volunteers without
changing cystatin-C (a better marker of GFR than sCr), raising the possi-
bility that it simply lowers sCr concentration without actually
preventing CIN (Anderson, Park, & Patel, 2011).

A recent meta-analysis showed that NAC decreases the incidence of
CIN in patients with pre-existing renal insufficiency but not in patients
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with diabetes (Kang, Hu, Li, Ai, & Peng, 2015). A large recentmeta-anal-
ysis (Subramaniam, Wilson, et al., 2016) showed that low-dose
(1200 mg/day or less) and high-dose NAC (N1200 mg/day) had a bor-
derline, clinically-relevant effect and a small, not clinically-relevant ef-
fect, respectively, in reducing CIN compared to intravenous saline. A
clinically important and statistically significant reduction in CIN was
seen when NAC was compared with intravenous saline in patients re-
ceiving low-osmolar but not isoosmolar CM, with risk ratio estimates
not differing between intravenous and intra-arterial routes of CM ad-
ministration (Subramaniam, Wilson, et al., 2016). Finally, another
large recent meta-analysis showed inverse and significant association
between NAC supplementation and risk of CIN in patients undergoing
coronary angiography and computed tomography, while a protective
role in patients undergoing peripheral angiography was not obvious
(Xu, Tao, Bai, Deng, & Chen, 2016).

NAC is inexpensive, readily available, easily administered, not asso-
ciated with major adverse effects (except at high intravenous dose;
risk of anaphylactic reaction; Anderson et al., 2011), and its use is gen-
erally not contraindicated because it rarely induces drug interactions
(Owen et al., 2014; Wu et al., 2013). Nevertheless, at present the evi-
dence of efficacy is not sufficient to recommend its use and it should
not be considered a substitute for appropriate pre-procedural patient
screening and adequate volume expansion (ACR Committee on Drugs
and Contrast Media, 2016; Authors/Task Force members, 2014; Owen
et al., 2014). Future research is needed to further define specific con-
texts in which patients could benefit from its use (Subramaniam,
Wilson, et al., 2016).

7.2.3. Ascorbic acid
Due to the antioxidant properties of ascorbic acid, its efficacy in the

prevention of oxidative stress-associated diseases has been studied ex-
tensively. Ascorbic acid is a safe,well-tolerated, and readily available an-
tioxidant, which has been shown to attenuate renal damage in a CIN rat
model (McCullough, Wolyn, Rocher, Levin, & O'Neill, 1997). Apart from
scavenging oxygen free radicals thatmediate cell necrosis aftermyocar-
dial infarction and after angioplasty, ascorbic acid may also act as an an-
tioxidant to inhibit ischemic cell death in the kidney (Zhou & Chen,
2012). However, conflicting results have been obtained in humans. It
has been reported that prophylactic oral ascorbic acid administration
may protect against CIN at a dosage of 3 g orally 2 h before the proce-
dure and 2 g during the night and in the morning after the procedure
(Spargias et al., 2004). In another study, patients receiving ascorbic
acid had a 33% lower risk of developing CIN (Sadat, Usman, Gillard, &
Boyle, 2013). In addition, when the patients underwent low-osmolar
CM angiography with adequate hydration plus ascorbic acid, the inci-
dence of CIN decreased significantly (Ali-Hassan-Sayegh et al., 2016).
On the other hand, in patients with pre-existing renal dysfunction, no
effect has been demonstrated (Boscheri et al., 2007). Oral, high-dose
of ascorbic acid plus hydration could have antioxidant effects on renal
function, in patients receiving low-osmolar CM, but does not decrease
sCr concentration, and is not effective in patients with baseline renal in-
sufficiency (Zhou & Chen, 2012). Another study showed no benefit over
placebo, when standard dosages of ascorbic acid are administered intra-
venously the day before and the day of CM exposure in patients with
renal insufficiency undergoing cardiac catheterization (Ali-Hassan-
Sayegh et al., 2016).

7.2.4. Statins
Increasing evidence has demonstrated that statins can reduce the

risk of CIN by means of non-lipid lowering (pleiotropic) effects on fac-
tors contributing to CIN progression, such as improving endothelial
function, maintaining nitric oxide production, reducing inflammatory
and immuno-modulatory processes, oxidative stress and platelet adhe-
sion, that may contribute to both cardio- and nephro-protection even in
the short-term (Leoncini, Toso, Maioli, Tropeano, & Bellandi, 2013;
Yang, Wu, & Hu, 2015).
However, the actions of different statins (such as rosuvastatin and
atorvastatin) are not the same. The differences might be associated
with anti-inflammatory effects, low-density lipoprotein cholesterol
loweringpotency, nephroprotection and the effects onmyocardial func-
tion (Liu, Liu, et al., 2014). The efficacy of statins for CIN prevention
seems to be independent of lipophilicity of the statin tested (simvastat-
in, atorvastatin, and rosuvastatin) (Akyuz, Yaylak, Altay, Kasikcioglu, &
Cam, 2015). In vitro, statins enhanced the production of heme oxygen-
ase-1 protein, interfered with NADPH oxidase activity, diminished ad-
hesion molecule expression and reduced free radical formation
(Pattharanitima & Tasanarong, 2014). Pre-treatment of rats with statin
appeared to attenuate the increase in sCr level and decreased the ap-
pearance of unfavourable histological findings in an ischemic-reperfu-
sion injury model. Moreover, statins can attenuate CIN in a rat model
throughmodulation of oxidative stress and pro-inflammatory cytokines
(Pattharanitima & Tasanarong, 2014).

Currently, protocols for prevention of CIN in the United States do not
include the use of statins. It may be time to reassess the role of statins in
preventing CIN, especially because they are readily available, easy to ad-
minister, and relatively inexpensive. Statin therapy prevents the devel-
opment of CIN in patients undergoing coronary angiography or
percutaneous coronary intervention. All statin types tested had similar
beneficial action, while the preventive action was most prominent in
patients with chronic kidney disease, diabetes, congestive heart failure,
those who received high volumes of CM, patients that are statin-naive,
and those with acute coronary syndrome (Gandhi, Mosleh, Abdel-
Qadir, & Farkouh, 2014). In contrast, patients receiving rosuvastatin
had a 51% lower risk of CIN compared to controls, however in chronic
kidney disease patients undergoing CM exposure, rosuvastatin treat-
ment showed no effect in preventing CIN (Yang et al., 2015). Statins
may reduce CIN risk in low-risk patients with normal or slightly abnor-
mal renal function but not in patients with moderate to severe renal
dysfunction (Davenport, Cohan, & Ellis, 2015; Ukaigwe et al., 2014).
The implementation of high-dose statin before diagnostic catheteriza-
tion reduces the incidence of CIN and should be considered as an addi-
tional preventive measure in patients without contraindications
(Authors/Task Force members, 2014).

In line with all recent meta-analyses on the comparison of statins
versus intravenous saline (Li, Liu, Fu, Mei, & Dai, 2012; Li et al., 2016;
Michael et al., 2014; Pappy, Stavrakis, Hennebry, & Abu-Fadel, 2011;
Takagi & Umemoto, 2011; Zhang, Li, et al., 2011; Zhou, Yuan, Zhu, &
Wang, 2011) except one (Zhang, Shen, et al., 2011), a large recent
meta-analysis (Subramaniam, Wilson, et al., 2016) detected a clinical-
ly-important protective effect against CIN in populations with chronic
kidney disease, diabetes mellitus, cardiac disease, and in general popu-
lations when statins were administered in combination with intrave-
nous fluids compared with intravenous fluids alone, or in combination
with NAC compared to NAC alone, but the effect was only statistically
significant in the latter comparison. The authors concluded that apart
from the fact that their findings provide moderate strength of evidence,
there are also reasons to move forward with statins cautiously because
all studies evaluating their effect to reduce the incidence of CIN have
been performed using intra-arterial CM administration and, therefore,
the protective effect against CIN for intravenous CM administration is
unknown; it is also possible that the findings reported in the studies
of statins could be partly explained by a direct effect on GFR that is inde-
pendent of a protective effect on renal function (Subramaniam, Wilson,
et al., 2016).

In summary, the current data regarding the efficacy of statins in CIN
prophylaxis are inconclusive and there is insufficient evidence to gener-
ally support their use in radiology patients. Future research is needed to
determinewhether statins can reduce CIN in patients receiving intrave-
nous CM (Subramaniam, Wilson, et al., 2016). However, according to
the European Society of Cardiology/European Association for Cardio-
Thoracic Surgery guidelines (Authors/Task Force members, 2014), for
patients with moderate-to-severe chronic kidney disease undergoing
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coronary angiography or multi-detector computed tomography short-
term, high-dose therapy should be considered with rosuvastatin
40/20 mg or atorvastatin 80 mg or simvastatin 80 mg.

7.2.5. Phosphodiesterase 5 inhibitors
Drugs currently used for the treatment of erectile dysfunction in

humans by enhancing the vasodilatory effect of released nitric oxide
(sildenafil, tadalafil, vardenafil, and avanafil) could offer protection
against CIN by sustaining the vasodilatory effect of nitric oxide. These
drugs act by selective inhibition of the enzyme cyclic guanosine
monophosphate (cGMP)-specific phosphodiesterase type 5 thatmetab-
olizes cGMP, the principal mediator of nitric oxide induced smooth-
muscle relaxation and vasodilatation in the corpora cavernosa, and are
collectively known as phosphodiesterase 5 inhibitors. However, the en-
dogenous vasodilator nitric oxide is crucial for medullary oxygenation
as well by enhancing regional blood flow (Morcos, 2014). The passage
of CM through the kidney is associatedwith an increase in themetabolic
activity of the renal outer medulla andmedullary vasodilatory response
is mediated by the release of prostanoids and nitric oxide. Decline in ni-
tric oxide availability may intensify the hypoxic insult and contribute to
the development of contrast-induced nephropathy. Prophylactic ad-
ministration of a phosphodiesterase 5 inhibitor, particularly the long
acting tadalafil, prior and after CM administration, therefore, offers a
simple and rational approach to reduce the risk of contrast-induced ne-
phropathy. This hypothesis warrants investigation to determine its clin-
ical relevance (Morcos, 2014).

The protective effect of such drugs (mainly sildenafil and recently
tadalafil) against CIN has been to date investigated in some animal stud-
ies (Choi et al., 2009; de Almeida et al., 2016; Lauver, Carey, Bergin,
Lucchesi, & Gurm, 2014; Oruc et al., 2010; Ozbek et al., 2015). The effects
of sildenafil on renal ischemia-reperfusion injury have been investigat-
ed in some animal models. In an experimental study of renal ischemia-
reperfusion injury of male Sprague-Dawley rats (Choi et al., 2009), sil-
denafil showed anti-apoptotic effects in experimental ischemia-reper-
fusion renal injury via ERK phosphorylation, induction of iNOS and
eNOS production, and a decrease in the Bax/Bcl-2 ratio. In another
study on male Wistar albino rats, it was shown that pre-ischemic treat-
ment with sildenafil can significantly attenuate ischemia/-reperfusion-
induced renal injury by decreasing leukocyte infiltration (Oruc et al.,
2010).

Furthermore, the protective effect of sildenafil has been evaluated in
a rabbit model (New Zealand white rabbits) of contrast-induced AKI
(Lauver et al., 2014). The drug was administered before CM infusion
and repeatedly thereafter. Animals were euthanized after 48 h. Intrave-
nous CMadministration producedmarked kidney injury. sCr concentra-
tions were elevated within 2 h of the infusion and remained elevated
thereafter. Renal histological evaluation revealed significant tubular ne-
crosis. The effects of the CM were dose dependent. Treatment with sil-
denafil was associated with a lower degree of histological injury,
attenuation in markers of AKI and reduction in electrolyte (K+) de-
rangement. These results suggested a possible role for sildenafil in the
treatment of contrast-induced AKI, warranting further evaluation to de-
termine the exact mechanism of protection.

In a recent animal study, maleWistar rats were divided into control,
CIN, and CIN pre-treated with sildenafil (de Almeida et al., 2016). Renal
function was evaluated (GFR, renal blood flow, sCr, uraemia, and pro-
teinuria) and oxidative stress was assessed by flow cytometry for intra-
cellular ROS. Sildenafil treatment in the CIN group attenuated the
marked reduction of GFR and renal blood flow; it reduced sCR, uraemia,
and proteinuria, whileflow cytometry demonstrated attenuation of ROS
production. These data suggest that sildenafil may be a new therapeutic
agent to prevent CIN by preserving renal function and attenuating oxi-
dative stress.

Finally, another study, has recently investigated the effect of tadalafil
in preventing CIN in femaleWistar albino rats (Ozbek et al., 2015). After
48 h of dehydration, CM (megluminediatrozoate) was administered to
the first group; CM with tadalafil was administered to the second
group, while the third group served as controls. Blood and tissue sam-
ples were taken 48 h after the procedure. Serum cystatin C, sCr and
blood urea nitrogen (BUN) values were significantly lower in the CM
plus tadalafil group compared to the CM only group. Serum and tissue
malondialdehyde concentrations were significantly lower in the CM
plus tadalafil group than in the CM only group. These results demon-
strated the protective effect of tadalafil in the prevention of CIN in rats.

8. Conclusions

The exact pathophysiology of CIN remains obscure. Consequences of
CIN can be devastating, especially in the vulnerable subgroups of the
general population. However, the need for contrast-based medical ex-
aminations and interventions is constantly increasing. All patients
should be evaluated for CIN risk and an individualized risk-benefit strat-
egy prepared. Intravenous volume expansion using isotonic fluids prior
to CM administration is the intervention proven most effective. The
value of using compounds with antioxidant properties other than sodi-
um bicarbonate remains controversial, warranting further clinical
investigation.
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