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Abstract
Α number of genetic variants have been associated with Alzheimer’s disease (AD) susceptibility. Sec1 family domain-containing
protein 1 (SCFD1) gene polymorphism rs10139154 has recently been implicated in the risk of developing amyotrophic lateral
sclerosis (ALS). Similarities in the pathogenetic cascade of both diseases have also been described. The present study was designed
to evaluate the possible contribution of SCFD1 rs10139154 to AD. A total of 327 patients with AD and an equal number of healthy
controls were included in the study and genotyped for rs10139154.With logistic regression analyses, rs10139154was examined for
the association with the risk of developing AD. In the recessive mode, SCFD1 rs10139154 was associated with a decreased risk of
developing AD (odds ratio (OR) (95% confidence interval (CI)) = 0.63 (0.40–0.97), p = 0.036). The current study provides
preliminary evidence of the involvement of SCFD1 rs10139154 in the risk of developing AD.
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Introduction

Alzheimer’s disease (AD) is the most prevalent type of de-
mentia and accounts for 60–80% of all dementia diagnoses
worldwide (Ashraf et al. 2016). There are almost 44 million
individuals suffering from AD worldwide, a number which is
expected to exceed 115 million by 2050 (Qiu et al. 2009). AD

is more common in Western Europe, with 2 out of 3 patients
being women, whereas its main risk factor remains age (2017
Alzheimer’s disease facts and figures 2017).

AD is characterized by extracellular deposits of amyloid-β
(Aβ), the major component of senile plaques (SPs), alongside
the intracellular accumulation of hyperphosphorylated tau
protein, namely, neurofibrillary tangles (NFTs) (Scheltens
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et al. 2016). These are the histopathological hallmarks of the
disease, and both of these are products of abnormal variants of
normally functioning proteins, the Aβ and the tau proteins
(Magalingam et al. 2018).

Amyloid-β is a peptide found in the healthy human brain, and
it is produced by the cleavage of the amyloid precursor protein
(APP) (Tosun et al. 2017). Normally, the cleavage of APP is
mediated by α-secretase and γ-secretase in a pathway known
as non-amyloidogenic (Hardy 2017; Scheltens et al. 2016). In
AD, APP is cleaved by β-secretase instead of α-secretase,
through an amyloidogenic pathway, resulting in the formation
of the Αβ peptide (Ashton et al. 2018; Hardy 2017; Parihar
and Hemnani 2004; Scheltens et al. 2016). The most abundant
alloform of the Αβ peptide is Αβ42, which has the tendency to
aggregate, forming SPs, thus leading to neurotoxicity and even-
tually neuronal loss (Carmona et al. 2018).

Tau is a microtubule-binding protein widely expressed in the
human brain, particularly in axons and dendrites (Sebastian-
Serrano et al. 2018). Tau’s primary function is to maintain mi-
crotubule stability, thus promoting axonal transport, which is
essential for the growth and survival of neurons. It is a phospho-
protein and its phosphorylation is closely regulated. In AD, tau
becomes hyperphosphorylated and loses its normal function,
resulting in the disruption of microtubules and the interruption
of normal axonal transport (Mietelska-Porowska et al. 2014). On
the other hand, the hyperphosphorylated tau protein tends to
accumulate intracellularly, forming aggregates, NFTs, which
are neurotoxic (Alonso et al. 2018).

Approximately 1–6% of all AD cases are familial, all autoso-
mal dominant forms, with a relatively early-onset of AD symp-
toms (< 65 years of age) (EOAD) (Bekris et al. 2010, O'Brien &
Wong, 2011, Haines 2018). Mutations in the APP, presenilin 1
(PSEN1), and presenilin 2 (PSEN2) genes have been described
in EOAD (Bekris et al. 2010, O'Brien & Wong, 2011, Haines
2018).

Regarding late-onset AD (LOAD), the APOE gene that en-
codes theAPOEproteinwas the first that was described to confer
susceptibility to AD (Raghavan and Tosto 2017). APOE protein
exists in 3 allelic variants ε2, ε3, and ε4. From these, ε4 is
involved in an increased risk of LOAD, since it seems to interfere
with the synthesis, clearance, and aggregation ofΑβ (Parihar and
Hemnani 2004; Shao et al. 2017).

Over the past decade, thanks to genome-wide association
studies (GWASs), several novel risk genes and polymorphisms
associated with LOAD have been identified, some linked to the
immune response (CR1, CD33, EPHA1, MS4A, TREM2,
ABCA7) others to the synaptic function and endocytosis path-
ways (PICALM, CD2AP, BIN1, SORL1) or to cholesterol and
lipid metabolism (CLU, ABCA7) (Karch and Goate 2015;
Raghavan and Tosto 2017; Shao et al. 2017). From these, vari-
ants in triggering receptor expressed on myeloid cells 2
(TREM2) have been reported to increase the risk of LOADwith
its most common variant, R47H, to have almost the same effect

as APOEε4, although with a lower impact (Carmona et al. 2018;
Van Cauwenberghe et al. 2016). Accounting for EOAD, more
than 300 variants have been described to date, all providing
weight to the Aβ pathology (Cuyvers and Sleegers 2016;
Raghavan and Tosto 2017; Shao et al. 2017).

The pathogenesis of AD is based on the combination of
genetic factors and different epigenetic events (Cubinkova
et al. 2018). Epigenetic modifications with the major mecha-
nisms being DNA methylation, histone modification, and
non-coding RNAs have appeared to be strong contributors
to aging and AD (Wang et al. 2013). On the other hand, well
defined co-factors of AD pathogenesis are oxidative stress and
its subsequent cascade at the level of the mitochondrial, DNA,
and endoplasmic reticulum (ER) dysfunction, protein
misfolding, and calcium and metal dyshomeostasis
(Cubinkova et al. 2018).

Sec1 family domain-containing protein 1 (SCFD1) is a mem-
ber of the Senc1/Munk 18 (SM) family of proteins which are
vesicle-trafficking proteins, functioning with a specific type of
SNARE proteins, the syntaxins (Carr and Rizo 2010, Dascher &
Balch, 1996, Yamaguchi et al, 2002). SCFD1 is mainly involved
in the ER-to-Golgi transport in conjunction with syntaxin 5,
assisting in the membrane fusion and allowing the vesicles to
pass from one compartment to the other. It may also function
in the pre-Golgi intermediates, togetherwith syntaxins 18 and 17,
while it has also been proven that it interacts with the conserved
oligomeric Golgi complex subunit 4 (COG4) complex, playing
an important role in the intra-Golgi-retrograde transport (Hou
et al. 2017;Nogueira et al. 2014). Furthermore, it is quintessential
in the response to oxidative stress, contributing to protein traf-
ficking in the face of cellular stress (Bando et al. 2005). It exerts
anti-apoptotic effects; thus, an increased expression of SLY1
seems to suppress the morphological changes associated with
ER due to oxidative stress and prevents cell death (Bando et al.
2005). These have proven to be in a close association with the
pathogenesis of Parkinson’s disease (PD), another neurodegen-
erative disease (Bando et al. 2005).

An association of the SCFD1 gene polymorphism
rs10139154 with the risk of developing amyotrophic lateral scle-
rosis (ALS) has recently been described (Chen et al. 2018), par-
ticularly with the age of onset of the disease (Chen et al. 2018).
The mechanisms underlying possible neurodegeneration have
not yet been fully elucidated, although it has been demonstrated
that patients with ALS/frontotemporal dementia (FTD) exhibit
impaired endosomal trafficking function, the dysfunction of the
trans-Golgi trafficking network, and autophagy (Aoki et al.
2017). These effects aggravate under stress conditions, progres-
sively leading to neurodegeneration (Jovičić et al. 2015; Theuns
et al. 2014). Abnormal endocytic trafficking has been reported in
several neurodegenerative diseases, including ALS and AD
(Aoki et al. 2017; Conlon et al. 2018; Haeusler et al. 2014).
Additionally, previous studies revealed overlapping pathogenic
mechanisms of the two diseases, involving the disruption of a
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common axonal transport mechanism of proteins to the synaptic
terminal, which is regulated by neurofilaments (Muresan and
Ladescu Muresan 2016; Muresan et al. 2014). Considering the
similarities in the pathogenetic cascade of both diseases and neu-
rodegeneration (Dardiotis et al. 2019; Jouroukhin et al. 2013), as
well as the impact of SCFD1 and particularly of the rs10139154
SNP on ALS, we deemed it useful to determine whether an
association exists between AD susceptibility and the
rs10139154 SCFD1 gene variant.

Therefore, the aim of this study was to examine the effects
of SCFD1 rs10139154 on AD development.

Methods

Participants

In this study, a total of 654 individuals were recruited, 327
patients with a clinical diagnosis of AD (66.9% female, mean
age of blood collection ± standard deviation (SD) = 78.90 ±
8.56 years) and 327 cognitively healthy controls. The samples
of the patients were collected from the Neurology Department
of the University Hospital of Larissa. The diagnosis of prob-
able AD was based on the National Institute of Neurological
and Communicative Disorders and Stroke/Alzheimer Disease
and Related Disorders Association (NINCDS/ADRDA)
criteria for AD (McKhann et al. 1984), and patients were
submitted to certain tests, such as Mini-Mental State (MMS)
or ADDENBROOKE-ACE-III cognitive examinations. The
minimum MMS score obtained was smaller than 5, and for
many patients, it was impossible to carry out the tests. The
majority of the patients exhibited indicative cortical atrophy in
the brain magnetic resonance imaging (MRI) or a reduced
blood flow in the HMPO brain scan. A complete neurological
examination was performed on each patient. The control sam-
ples originated from healthy individuals without a significant
medical history and with a normal MMS score, and none
fulfilled the criteria of mild cognitive impairment (MCI).
The local institutional review board approved the research
protocol, and a written informed consent was granted by all
the participants or close relatives included in the study.

DNA Isolation and Genotyping Procedure

Peripheral blood samples were collected from all participants.
Genomic DNA was extracted from peripheral blood
leucocytes, using the method of salting out (Dardiotis et al.
2017; Siokas et al. 2018). Using TaqMan allele-specific dis-
crimination assays on an ABI PRISM 7900 Sequence
Detection System, tag SNPs were genotyped and analyzed
with SDS software (Applied Biosystems, Foster City,
California, USA). The personnel that performed the

experimental work was unaware of the information regarding
the participants. The genotypic call rate was 97.55%.

Statistical Analysis

Fisher’s exact test, with a threshold of p value ≤ 0.05, was
indicative of the deviation from the Hardy-Weinberg equilib-
rium (HWE) (Dardiotis et al. 2014b, 2018a; Katsarou et al.
2018). The study’s statistical power was calculated using the
CaTS Power Calculator for Genetic Studies (Skol et al. 2006).

Using binary univariate logistic regression analysis, odds
ratios (ORs) and 95% confidence intervals (CIs) were calcu-
lated in order for possible associations between rs10139154
and AD risk to be estimated. Statistical analysis was per-
formed using SNPStats software (http://bioinfo.iconcologia.
net/SNPstats/) (Sole et al. 2006), assuming five genetic
models (the co-dominant, the dominant, the recessive, the
over-dominant, and the additive) of inheritance. A p value <
0.05 was considered to indicate a statistically significant
difference.

Results

In total, 654 individuals were included in this study: 327 pa-
tients clinically diagnosed with AD (66.9% female, mean age
of blood collection ± SD = 78.90 ± 8.56 years) and 327 cog-
nitively healthy controls. Fisher’s exact test revealed that
rs10139154 was in HWE in both AD cases and healthy con-
trols, with p values equal to 0.079 and 0.71, respectively.
Based on the power analysis, this study had a power of
80.0% to detect an association of a variant with a genetic
relative risk of 1.33, presuming the multiplicative model, with
minor allele frequency (MAF) equal to 37% and type I error
level of 0.05.

Analyses performed to assess the genotypic frequencies of
SCFD1 rs10139154 demonstrated that genotypes C/C, C/T,
and T/Twere found in 124 (39%), 137 (43%), and 58 (18%) of
the healthy controls, respectively. Concerning the individuals
with AD, the results for C/C, C/T, and T/T were 139 (44%),
141 (44%), and 39 (12%), as well. A total of 16 samples (8
cases with AD and 8 healthy controls) failed to be genotyped.
Allele and genotype frequencies in AD cases and in healthy
controls appear in Table 1.

According to the univariate single-locus logistic regression
analysis, SCFD1 rs10139154 was significantly associated
with a decreased risk of developing AD, particularly in the
recessive mode (OR (95% CI) = 0.63 (0.40–0.97), p = 0.036).
A non-statistically significant trend for association was also
revealed in the co-dominant mode for the T/T genotype (OR
(95% CI) = 0.60 (0.37–0.96), p = 0.097) and in the log-
additive model (OR (95% CI) = 0.81 (0.65–1.01), p =
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0.056). ORs, CIs, and the p values for all modes are presented
in Table 2.

Discussion

The current study provides preliminary results for an associa-
tion between the rs10139154 SCFD1 gene variant and a de-
creased risk of developing AD, confirming the possible
existing theories of overlapping pathologies between neuro-
degenerative diseases. Of note, at least to the best of our
knowledge, no previous study in the existing literature to date
has shown any type of association between the SCFD1 gene
and AD.

AD represents the most common form of dementia and is
characterized by the extracellular deposits of SPs and the in-
tracellular accumulation of NFTs (Singh et al. 2016). Several
hypotheses have been postulated to date for the pathogenetic
mechanisms of the disease, most of them placing the SPs in
the center of the pathology (Cubinkova et al. 2018; Korczyn

2008). However, a plethora of studies have included several
factors in the pathogenesis of AD, pointing to the complexity
and heterogeneity of the disease. Among these, oxidative
stress, mitochondrial dysfunction, ER stress and protein
misfolding, calcium dyshomeostasis, inflammatory processes,
and environmental and dietary factors all contribute to a vi-
cious cycle leading to amyloidogenesis, hyperphosphorylated
tau with neurodegeneration, and eventually cell death
(Cubinkova et al. 2018; Luca et al. 2015; Razgonova et al.
2019; Zaganas et al. 2013).

Concerning the wide array of neurodegenerative diseases,
various overlapping pathologies may exist, raising the possi-
bility of converging pathogenetic mechanisms among the dis-
eases (Androutsopoulos et al. 2011; Beharry et al. 2014;
Friese et al. 2014; Goedert 2015). Previous studies have dem-
onstrated possible common molecular pathways involved in
the pathogenesis of ALS and AD (Muresan and Ladescu
Muresan 2016; Muresan et al. 2014). This crosstalk is mainly
attributed to abnormal endocytic trafficking function, the com-
promised secretion of extracellular vesicles, and defective in-
tracellular and extracellular vesicle trafficking (Muresan and
Ladescu Muresan 2016). All of the above, via cellular stress,
aggravate the mechanisms of, and lead to, neurodegeneration
(Jovičić et al. 2015). It has also been suggested that the accu-
mulation and aggregation of specific proteins in the central
nervous system may lead to neurodegeneration and that spe-
cific mutations, different environmental factors, or oxidative
stress may engender or aggravate this phenomenon (Bourdenx
et al. 2017; Garcia-Gonzalez et al. 2018; Sierra-Fonseca and
Gosselink 2018).

The precise mechanism through which the rs10139154
SCFD1 gene variant may influence AD pathophysiology
and neurodegeneration has not yet been fully elucidated. A
possible assumption is that of the combination of oxidative
stress, protein dysfunction, disturbances of vesicle trafficking,
and membrane fusion events, which are all enhanced by this
variation. However, further studies are required to examine
this hypothesis.

Table 1 Allelic and genotype frequencies of SCFD1 rs10139154 in healthy controls, in AD cases, and in the whole samples

SNP Genotypes/
alleles

Healthy controls
(n = 327)

AD (n = 327) Whole sample
(n = 654)

rs591486 n (%)* n (%)* n (%)*

Genotype C/C 124 (0.39) 139 (0.44) 263 (0.41)

C/T 137 (0.43) 141 (0.44) 278 (0.44)

T/T 58 (0.18) 39 (0.12) 97 (0.15)

Missing 8 8 16

Allele C 385 (0.60) 419 (0.66) 804 (0.63)

T 253 (0.40) 219 (0.34) 472 (0.37)

SNP single-nucleotide polymorphism, SCFD1 Sec1 family domain-containing protein 1, AD Alzheimer’s disease

*Percentages (%) have been calculated based on successfully genotyped samples

Table 2 Single locus analysis for association between SCFD1
rs10139154 and AD in co-dominant, dominant, recessive, over-
dominant, and log-additive modes

Mode Genotype OR (95% CI) p value

Co-dominant C/C 1.00 0.097
C/T 0.92 (0.66–1.29)

T/T 0.60 (0.37–0.96)

Dominant C/C 1.00 0.23
C/T-T/T 0.82 (0.60–1.13)

Recessive C/C-C/T 1.00 0.036
T/T 0.63 (0.40–0.97)

Over-dominant C/C-T/T 1.00 0.075
C/T 1.05 (0.77–1.44)

Log-additive – 0.81 (0.65–1.01) 0.056

SCFD1 Sec1 family domain-containing protein 1, AD Alzheimer’s dis-
ease,CI confidence interval,OR odds ratio. Statistically significant values
are presented in italic font
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Despite the aforementioned interesting results, several pos-
sible limitations of this study need to be acknowledged.
Firstly, some of the patients’ data are primarily based on esti-
mates due to the lack of original information since most of
them were permanently hospitalized due to advanced AD and
were therefore not included in the regression models.
Secondly, since APOE ε4 is considered the strongest genetic
risk factor for AD (Dardiotis et al. 2014a; Lipnicki et al. 2017;
Liu et al. 2013), the interaction between this allele and gene
variants may possibly increase the prognostic accuracy or in-
fluence the susceptibility of AD. However, in this study, we
could not determine the APOE ε4 carriers. Finally, environ-
mental co-factors, such as dietary habits, smoking, alcohol
consumption, exercise, companionship, sedentary life style,
level of education, stress, and positive family history
(Anastasiou et al. 2017; Baltazar et al. 2014; Costa et al.
2017; Dardiotis et al. 2013, 2018b; Gubandru et al. 2013;
Lyubartseva and Lovell 2012; Siokas et al. 2019), may be
markedly involved in the pathology of AD and should also
be considered for a possible association.

Furthermore, epigenetic alterations have been suggested to
be a major co-factor of aging, which is considered a main non-
modifiable risk factor for AD (Fyfe 2018). It is thought that,
inevitably, different epigenetic alterations accumulating
through a lifetime could modify gene expression, which may
in turn lead to AD (Miller and O’Callaghan 2008). In AD, all
of the epigenetic mechanisms have been shown to have an
impact to a certain degree, althoughmethylation seems to play
the most important role (Argentieri et al. 2017; Danborg et al.
2014; Negoita et al. 2017). For instance, the increased meth-
ylation of the BDNF promoter has been associated with MCI-
turned-AD (Xie et al. 2017); hypermethylation of regions in
the APOE4 gene has been described, even as a marker for
LOAD (Corder et al. 1993; Wang et al. 2008). The hypome-
thylation of the promoter region of APP genes has been shown
to lead to increased Αβ production (Tohgi et al. 1999b), and
alterations in the methylation of several stops in the tau protein
pathway play a role as well (Tohgi et al. 1999a; Zhou et al.
2008). Finally, even the hypermethylation of ribosomal DNA
has been shown to be an epigenetic marker of AD (Pietrzak
et al. 2011). Considering miRNAs, several have been found to
be deregulated in patients with AD, such as miRNA-106,
miRNA-146 and miRNA-9, and have been proposed to be
used as biomarkers; however, further research is warranted
towards this direction (Mushtaq et al. 2016). Finally, epige-
netic alterations are also associatedwith different environmen-
tal factors, such as those mentioned further above, as well as
with different comorbidities, mostly diabetes mellitus and ar-
terial hypertension, both of those proven to be associated with
aging and AD (Gerritsen et al. 2016; Roubroeks et al. 2017).

In conclusion, to the best of our knowledge, the present
study is the first to provide a preliminary suggestion of a
significant association between the rs10139154 SCFD1 gene

variation and a decreased risk of developing AD. However, as
a newly associated variant, further studies are required in order
to clarify its precise role in AD.
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